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Report Summary

This final report summarizes activities and work completed between May,
1990 and May, 1994.

During this period we have participated in eleven scientific conferences
and advanced workshops concerning various aspects of wavelets and signal
processing. At each of these meetings we have presented the results of our
investigations under this grant. As another output of these investigations
we have produced 23 original scientific articles on various aspects of wavelets
and their applications. For the record we list these articles.

1.

Multiresolution analysis, Haar Bases, and Self-Similar Tilings of R*,
IEEE Trans. Info. Theory, 38 (1992), 556-568.
Grochenig and Madych

Translation Invariant Multiresolution Analyses,

Recent Advances in Fourier Analysis and Its Applications, Byrnes and
Byrnes, eds., NATO ASI Series C, Vol. 315, Kluwer, Dordrecht, 1990,
455-462.

Madych

Wilson Bases and Modulation Spaces,
Math. Nachr., 155 (1992), 7-17.
Feichtinger, Grochenig, and Walnut

Non-Orthogonal Wavelet and Gabor Expansions and Group Represen-
tations,

Wavelets and Applications, R. Coifman et al., eds., Jones and Bartlett,
Boston, 1992, 359-398.

Feichtinger and Grochenig

Image Reconstruction in Hilbert Space,

Mathematical Methods in Tomography, G.T. Herman, A.K. Louis, F.
Natterer, eds., Lecture Notes in Mathematics 1497, Springer Verlag,
Berlin, 1991, 15-49.

Madych

. Wavelets and Generalized Box Splines,
Appl. Analysis, 44 (1992), 51-76.
Lorentz and Madych




10.

11.

12.

13.

14.

15.

Spline Wavelets for Ordinary Differential Equations,
GMD technical report No. 562.
Lorentz and Madych

Maultiresolution analyses, Tiles, and Scaling Functions,

Probabilistic and Stochastic Methods in Analysis with Applications, Byrnes
et al., eds., NATO ASI Series C, Vol. 375, Kluwer, Dordrecht, 1992,
233-243.

Madych

A Riesz Basis for Bargman-Fock Space Related to Sampling and Inter-
polation,

Arkiv. f. Math., 30 (1992), 283-295.
Grochenig and Walnut

Reconstruction Algorithms in Irregular Sampling,
Math. Comp., 59, (1992), 181-194.
Grochenig

Efficient Algorithms in Irregular Sampling of Band-Limited Functions.
Proc. Int. Phoeniz Conf. on Computers and Communication 1991,
IEEE Comp. Soc, 1991, 490-495.

Grochenig

Some elementary properties of multiresolution analyses of L*(R"),
Wavelets - A tutorial in Theory and Applications, C. K. Chui, ed.,
Academic Press, Boston, 1992, 259-294.

Madych

Self-similar Lattice Tilings,
J. Fourier Analysis Appl. to appear.
Haas and Grochenig

Miscellaneous Error Bounds for Multiquadric and Related Interpola-

tors,
Computers Math. Applic., Vol. 24, No.12 (1992), 121-138.
Madych

Gabor Wavelets and the Heisenberg group: Gabor expansions and short
time Fourier transform from the group theoretical point of view,
Wavelets - A tutorial in Theory and Applications, C. K. Chui, ed.,
Academic Press, Boston, 1992, 359-298.

Feichtinger and Grochenig




16. Sharp results on random sampling of band-limited functions,
Probabilistic and Stochastic Methods in Analysis with Applications, Byrnes
et al., eds., NATO ASI Series C, Vol. 375, Kluwer, Dordrecht, 1992,
323-335.
Grochenig

17. A discrete theory of irregular sampling,
Lin. Alg. Appl, 193 (1993), 129-150.
Grochenig

18. Irregular sampling of wavelet and short time Fourier transforms,
Constr. Approz., 9 (1993), 283-297.
Grochenig :

19. Acceleration of the Frame Algorithm,
IEEE Trans, Signal Proc., 41 (1993), 3331-3340.

Grochenig

20. The recovery of irregularly sampled band-limited functions via tem-
pered splines,
J. Funct. Anal. 125 (1994), 201-222.
Lyubarskii and Madych

21. Orthogonality criteria for compactly supported scaling functions,
Appl. Comp. Harm. Anal., 1 (1994), 242-245.
Grochenig

22. Orthogonal Wavelet Bases for L?(R"),
Fourier Analysis: Analytic and Geometric Aspects, Bray et al., eds.,
Marcel Dekker, New York, 1994, 243-302.
Madych

23. Scaling Functions and Sequences Associated with Orthonormal Wavelets,
Houston J. Math. to appear.
Dlin and Madych

We bring attention to the fact that twenty of these articles have already
appeared in various scholarly journals and books. The first twenty one ar-
ticles on this list together with detailed summaries have been already sub-
mitted with earlier technical reports. The final two article on this list are
appended at the end of this report and are summarized below.

o Orthogonal wavelet bases for L*( R™). An orthogonal wavelet basis con-
sists of dilates and translates of one function or, more generally, a rela-
tively small finite number of functions. In this presentation we give the
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details of the construction of such bases where the dilation is defined
via a fairly general linear transformation. A liberal number of examples
are given to illustrate the flexibility of the recipe. The significance of
this work Hes in the fact that, unlike the dyadic case, in the case of
a more general dilation matrix there is no prescription for construct-
ing wavelets from a given scaling function or sequence. In this article
we introduce several methods for constructing wavelets with desired
properties in the case of general dilation matrices.

e Scaling Functions and Sequences Associated with Orthonormal Wavelets.
It is well known that the integer translates of the scaling function as-
sociated with a given scaling sequence may fail to be mutually orthog-
onal. In this article, we address several technical questions related
to this phenomenon. For instance, we show that the scaling function
naturally associated with a finite scaling sequence always generates a
multiresolution analysis and give elementary but non-trivial examples
of scaling sequences which give rise to pathological scaling functions.
The significance of this work lies in the fact that it is very important
in various applications to know whether an apparent scaling sequence <
will generate orthogonal wavelets via the usual paradigm.

In the previous technical report we mentioned that we were preparing a
paper on results concerning the breakdown of the so-called scaling functions
into more elementary building blocks. Since that report we have discovered
that these building blocks are closely related to the class of distributions
which are invisible or undetectable by the corresponding family of wavelets.
(Namely, if f is such a distribution and {t;x};rez is the corresponding family
of orthogonal wavelets then the scalar products (f, ;) are zero for all j and
k.) We believe that these observations can be developed into a significant
theory providing a deeper understanding of wavelets and the multiresolu-
tion analysis paradigm. The principal investigator intents to continue his
investigations into this area.




Orthogonal wavelet bases for L*(R™)

W. R. Madych*

Abstract

An orthogonal wavelet basis consists of dilates and translates of
one function or, more generally, a relatively small finite number of
functions. In this presentation we give the details of the construction
of such bases where the dilation is defined via a fairly general linear
transformation. A liberal number of examples are given to illustrate
the flexibility of the recipe.

1 Introduction

1.1 Overview

In this talk we present the notion of orthogonal wavelet bases of L*(IR")
relative to a general dilation matrix A and outline the natural scheme for
constructing such bases. This scheme was originally developed by S. Mallat
and Y. Meyer, see [31, 33].

An orthogonal wavelet basis for L?(IR) relatwe to dyadic dilation is a
complete orthonormal system of the form

(1) {2529(2*z — )}

where 9 is an appropriate function in L?(JR) and the indicies £ and j run
through the integer lattice Z = {0,+1,+£2,...}. The elements of such a basis
are often referred to as wavelets and the function 9 is sometimes referred to
as the fundamental wavelet.

*Department of Mathematics, University of Connecticut, Storrs, CT 06269. Partially
supported by a grant from the Air Force Office of Scientific Research, AFOSR-90-311.
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Figure 1: The sinc wavelet and its Fourier transform

1.2 Examples
1.2.1
Consider the classical example
1 if0<z<1/2
P(z)=¢ -1 ifl/2<z<1
0 otherwise.

The corresponding system (1) is the well known Haar basis for L2(IR).

1.2.2

Another example is the case

P(z) =

which is related to the theory of band limited functions and cardinal series.
Since the Fourier transform of % is the characteristic function of the set
{¢ : ® < €| < 2n} it follows from routine functional analytic and Fourier
transform techniques that the corresponding set (1) is a complete orthonor-
mal system for L2(IR). See Figure 1.

Because of the close relationship of ¢ to the classical cardinal sine, also
known as the sinc or sinus cardinalis, '

sin 27z — sInAx

T

sinc(z) = S TY ,
T




Figure 2: The function ¢ and the wavelet of Example 1.2.3

we refer to this basis as the sinc wavelet basis.

1.2.3

Finally consider the function whose graph is the second plot given in Figure
2. This function is defined by

P(z) = 830(x) — s2¢(x — 1) + s19(z — 2) — so¢(z — 3)
where ¢ is the unique compactly supported solution of
#(z) = sop(x) + s19(x — 1) + s528(x — 2) + 838(x — 3)

with L?(IR) norm one, see the first plot in Figure 2, and.

1+v3 3+v/3 3—-v3 1-+3
{30, 51,82,33} = 4 ’ 4 ’ 4 ) 4 .

The function 1 is a member of a class of fundamental wavelets introduced
by Ingrid Daubechies [12].




1.3 Dilation matrices and wavelets

In the description (1) note the role played by the translations r —  + j,
j € Z and the dilation z — 2z which is expansive and maps the lattice Z
into itself. Thus, more generally, if I is a lattice in IR", and A is an expansive
linear transformation on JR™ which leaves I' invariant then a wavelet basis
associated to (T', A) is a complete orthonormal system for L?(IR™) of the form

(2) | {a*?y;(A*z — 1)} inn

where 1,...,%, are an appropriate collection of orthonormal functions in
L*(IR"), a = |det A|, the index k runs through the integers Z, and the
parameter 7 runs through the lattice I'. Wavelets are simply the members
of such a basis and the collection {%1,...,%¥n} is the set of fundamental
wavelets.

1.4 Examples
1.4.1

In the case n = 1, ' = Z, and A = 3 consider the functions ¢;, [ = 1,2,
defined by

[ up ifE/3<z<(k+1)/3, k=0,1,2
h(z) = { 0 otherwise

where the u;;’s are scalars chosen so that

1 1 1
1
% U U1 U12
Uz U2l U222

is an orthogonal matrix. This definition implies that the system of functions

{3*24y(3%z — ) hecp oy hezjez

is an orthonormal system in L2(JR); that it is complete follows from an
argument similar to that used to show the completeness of the Haar system.
Here l = 1,2 and both k£ and j run through Z.



More generally if N is an integer greater than one and

1 1 .- 1
1 U1,0 u1p v ULN-1
~ .
UN-10 UN-1,1 °°° UN-1,N-1
is an orthogonal matrix then the collection of functions {%1,...,%n-1} de-

fined by

) = { 1 ifk/N <z <(k+1)/N, k=0,1,...,N—1
=10 otherwise

for ] = 1,...,N —1 is a set of fundamental wavelets. The corresponding
wavelet basis of L2(IR") is the collection

{NF2y (N2 = 5) i,
where l = 1,...,N —1 and both k and j run through Z.

1.4.2
In the case n = 2, I' = Z?, and

consider the function
¥(z) = 2sinc(Az) — sinc(z)
Where
T = ( 2 ) and sinc(z) = sinc(z;) sinc(zs) .

The function % is a bi-variate analog of the fundamental wavelet in Example
1.2.2. The Fourier transform of 1 is the characteristic function of the region

(€ : max{j&i],|&al} > 7, |&a] + 6] < 2}, see Figure 3. That
{2k/2¢(Ak$ - j)}kez,je22

is a wavelet basis of L2(IR?) follows from reasoning identical to that used in
Example 1.2.2.




Figure 3: The wavelet 1 and the support of 1 of Example 1.4.2

1.5 Contents and Notation

As mentioned in the overview, a natural framework for the construction of
a wavelet basis called a multiresolution analysis was developed by Y. Meyer
and his collaborators, see [20, 24, 31, 32, 33]. In view of form of these bases,
(2), it should not be surprising that the main elements of such analyses are
the notions of dilation and translation relative to a lattice.

In Section 2 we give an outline of the theory and include several examples
of mutiresolution analyses of L2(IR") associated with a lattice I and an ap-
propriate dilation matrix A. In Section 3 we show how these analyses give rise
to orthogonal wavelet bases. Miscellaneous remarks and acknowledgements
are collected in Section 4.

We use standard mathematical terminology and notation. A brief list of
some of the conventions used here follows: The Fourier transform f of an
integrable function f is defined by

fe) = [ e f(a)de

and distributionally otherwise. Basic facts concerning Fourier transforms and
distributions will be used without further elaboration in what follows. To
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avoid the pedantic repetition of “almost everywhere” and other modifying
phrases which are inevitably necessary when dealing with functions defined
almost everywhere, all equalities between functions and other related notions
are interpreted in the distributional sense whenever possible. The term sup-
port is also used in-the distributional sense; in particular the support of a
function f in L2(IR") is a well defined closed set. If W is a collection of
tempered distributions then W is the collection of Fourier transforms of el-
ements of W, in other words W = {f : f = § for some g in W}. For a
subset  of IR", a linear transformation B on IR", and an element y of R"
the sets BQ and Q + y are defined by B = {z : z = Bw for some w in Q}
and Q+y = {z : T = w+y for some w in Q}; L*(2) is the L? closure of
the subspace of those functions in L?(IR") whose support is contained in (2.
Given a measurable set Q, o denotes its characteristic or indicator function
and || denotes its Lebesgue measure.

2 Multiresolution Analyses

2.1 Definitions

Suppose [ is a lattice in IR", that is, I is the image of the integer lattice
Z" under some nonsingular linear transformation. We say that a linear
transformation A on IR" is an acceptable dilation for T' if it satisfies the
following properties:

o A leaves I' invariant. In other words, AI' C T" where
AT={y:y=Azandz €T} .

e All the eigenvalues, );, of A satisfy |A;| > 1.

These properties imply that | det A| is an integer @ which is > 2. For example,
if A = pI where p is an integer > 2 and I is the identity then A is an
acceptable dilation for any lattice I' and a = | det A| = p".

Such an A induces a unitary dilation operator Uy : f — Uaf on
L*(IR™), defined by

(3) Uaf(z) = |det A|72f(A7"2) .




If V is a subspace of L2(IR") we use the customary notation U4V to denote
the image of V under Uy, that is, UV = {f : f = Uag, g € V}. The
translation operator 7, is defined by 7, f(z) = f(z — y).

A multiresolution analysis V associated with (T', A) is a family {V;};ez of
closed subspaces of L2(IR") which enjoys the following properties:

Al. V; C Vjy for all j in Z.
A2. Uje ZViis dense in L?(IR").

A3. njezv,- = {0}.
A4. f(z) € V; if and only if f(Az) € Vj41. In other words
V;=UVo, j € Z.

A5. Vj is invariant under 7,. More specifically, if f (z) is in Vp then so is
f(x —7) forall yin T ’ '

A6. There is a function ¢ € Vp, called the scaling function, such that
{74®},er is a complete orthonormal basis for V.

The case A = 21 is often referred to as a dyadic multiresolution analysis.
It is also the case to which most of the current literature is devoted and,
except for certain technicalities, is representative of the general case.

A multiscale analysis is said to be composed of generalized spline functions
in the sense of Meyer if all the elements of the subspace Vy are continuous
and the mapping which maps f into the sequence of values {f(7)} er is an
isomorphism from Vj onto %(T').

Remark The above definition has several redundancies and thus is not
very compact, for example see [30]. However we use it here for reasons of
tradition and convenience.

2.2 Lattices, cosets, and related items

Every lattice ' in IR" is the image of Z" under an invertible linear trans-
formation. Thus there is no loss of generality by restricting attention to the
case ' = Z". We do this in what follows to avoid unnecessary obfuscation.
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The reader who is interested in the general statements of the results
discussed below can systematically replace Z" with I' and 27 Z" with the
corresponding dual lattice I".

Recall that if A is an acceptable dilation of ZZ" then AZ™ is a subgroup
of Z™ and a coset of AZ" is a set of the form

k+AZ"={k+Aj:j€Z"}
where k is an element of Z®. Any pair of cosets are either identical or disjoint
so that the collection of all cosets, which is denoted by Z"/AZ", consists of
disjoint sets whose union is Z". The number of disjoint cosets in Z" [AZ"™

is equal to @ = |det A|. A subset K of Z" is said to be a full collection of
representatives of Z"/AZ" if it contains exactly a elements and

Uk +AZ") = 2Z".
KkEK

We identify the representative with the coset it represents. For instance,
% = 0 refers to the element in AZ™ chosen to represent this coset.

Since the Fourier transform of f(A~!z) is af(A*¢) and we will use this
fact and its variants often in what follows, we adopt the notation B = A* to
avoid cumbersome expressions such as (A*)™1.

Furthermore we write K4 to denote a full collection of representatives of
Z"[AZZ", '

Ka={Ki,---,Ka} -
Since B is an acceptable dilation for ZZ" whenever A is, we write Kp to
denote a full collection of representatives of Z"/BZ",

Kg={v,..-,Va} -

Observe that K4 need not necessarily be a full collection of representatives
of Z"/BZ" and vice versa. This is easily seen by considering the two

dimensional example
01
1=(50)

Finally we note that any absolutely convergent sum over Z" can be
iterated as follows:

(4) Z‘Sj‘= Z{ > 31‘}

jez™ keKkp | jex+-BZ™




2.3 Scaling functions

An application of Plancherel’s formula implies that the orthonormality of the
collection {¢(z — j)}jez~ is equivalent to

(5) | > 8¢ —2nk) = 1.

keZ™ -

Thus every scaling function ¢ must satisfy (5).
The existence of a scaling function is equivalent to the following appar-
ently weaker condition:

A6;. There is a function ¢ in V; such that {¢(x — k)}rez= is a Riesz basis
for V. :

In many specific examples this property is much more apparent and easier
to verify than A6. We refer to the function ¢ of condition A6; as a pseudo-
scaling function.

We remind the reader that {¢(z — k)}rez~ is a Riesz basis for its closed
linear span if and only if there are positive constants, ¢; and cp which are
independent of {ax}rez~, such that

a Y Jal? < /R 1Y ade-kPdr<e Y |af

kez™ keZ™ kezZ™

It is well known and easy to verify that {¢(z — j)}jez~ is a Riesz basis
for the closure of its linear span if and only if there are positive constants, c;
and ¢y, such that R
(6) a < Y 1€ -2m)? < o

jezn
Orthonormality of {¢(z — j)}jez» is equivalent to the case ¢; = ¢ = 1.

Thus the alternate item A6, in the definition of multiresolution analyses
is equivalent to saying that V; is the closed linear span of the Z" translates
of one function ¢ which satisfies (6). The original item A6 means that the
constants ¢; and ¢y satisfy ¢; = cs = 1.

2.3.1 Details

The calculational technique of periodization is very useful in the study of
multiresolution analyses. It can be described as follows:

10




Suppose Q is a tile with respect to a lattice ' for IR". That is Q is a
compact subset of IR" which enjoys the following properties:
e J(v+Q)=IR"and

~€r

o |(7+Q)N Q| =0 for all vin T\ {0}.

Then if h is any intergrable function on IR" we may write

(7) [ b@yd = [ S h(e+ )i
B Qqyer

In the applications below it will usually suffice to take @ to be the cube
Qr = [-7,7]" and T = 27 Z". However occassionally other variants of this
formula will be used. Our first application of this elementary formula will be
the proof of (5).

To see (5) note that by virtue of Plancherel’s formula , (7), and the fact
that the collection {@¢(z — j)};ez~ is orthonormal we may write

[ #a—i)ga—Rda= [ 3 19 +2mm)PeHdE = 8
R Qr pacam
where 6; is the Kronecker delta. The last equality implies (5).

To see that A6, implies A6 suppose {¢(z — k)}rcz~ is a Riesz basis for

V5. In view of (6)
1

Vjezn 196 — 22
is a bounded 27 Z™ periodic function. Since f is in V; if and only if it enjoys
the representation

£(&) = F(©)(8)
for some F in L2(IR"/2xZ") it is clear that the function ¢ defined by
$(€)
VEjezn |B(& — 2m))P

isin Vy. Now ¢y satisfies (5) so the collection {¢g(z — j)}jez» is an orthonor-
mal subset of Vy. That the collection {¢o(z — j)}jez is complete follows
from the fact that every function f which enjoys the above representation in
terms of ¢ also enjoys an analogous representaion in terms of ¢,.

dgo(f) =

11




2.3.2 A property of the scaling function related to density

Because of condition A3 the scaling function ¢ must satisfy

®) Jim e fugHOdE =1

for every cube @ of ﬁmte diameter in JR". A detailed explanation of this
may be found, for example, in [30]. Thus if  is continuous at the origin then

(9) |do)=1.

In particular if ¢ is integrable over IR" then
| [ ¢la)dz] = [BO) =1 .

2.4 Scaling sequences

In view of Al and A4 the scaling function ¢ must satisfy the two scale
difference equation

(10) $(z) = ) sxd(Az — k)

kezZ®

for some sequence {s}re z" in l2(Z'i). The sequence {si}rez» is called the
scaling sequence. The Fourier transform of (10) is

(11) $(6) = S(BTOHB'E)
where B = A* is the adjoint of A and S(£) is the 27 Z"™ periodic function

S(¢) = Z spe kA,

kEZ"

2.4.1 Properties of scaling sequences

As a consequence of (5) the periodic function S introduce above must satisfy

(12) Y. IS¢ —2nB7k)|* =1

KEK B

12




where K is any full collection of representatives of Z"/BZ". Furthermore
if $(€) is continuous at the origin then S(¢) is also continuous at the origin
and

(13) S)=1.
This follows from (11) and the fact that, in view of (9), $(0) # 0.
In terms of the scaling sequence (12)-is equivalent to

(14) Z Sk-AjSk = aé-,k .

keZ"

If this sequence is also in {}(Z") then (13) is equivalent to

(15) > sk=a .

kezZ™
Thus (14) and (15) are a necessary set of conditions for an I'(Z") sequence

to be a scaling sequence.

Details To see (12) use (5), (11), iteration (4), the fact that S(B~'€) is
27 BZ™ periodic, and (5) again to write
1 =iz |S(B7Y(E — 275)$(B (€ — 2m5)|
= ey IS(BYE — 210) 2 {Sjens nzn |B(BH(E — 2m) — 27) |2}
= Y oreks |S(B~H(¢ - 27k)|?

which is the desired result.

2.4.2 More properties of the scaling functions and sequences

Note that in view of (10) ¢ may be considered as a fixed point of the trans-
formation ¢ — Yrez» skd(Az — k). Unfortunately the solution of (10) is not
unique since the distribution ¢y defined by

$o(€) = h(£)(&)

is also a solution of (10) whenever h is any locally integrable function which
satisfies h(B¢) = h(£). Such a distribution ¢ may fail to be a scaling func-
tion. On the other hand if h also enjoys |h(€)| = 1 for almost all £ then
o is also a scaling function but not necessarily for the same multiresolution
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analysis. Further restrictions are needed on the scaling sequence {sg}rez»
and the scaling function ¢ to guarantee a unique solution of equation (10),
for example see [2, 13] for some details concerning this matter.

The scaling function ¢ is not unique since any function ¢; whose Fourier
transform satisfies

$1(6) = H(E)B(8)

is also a scaling function for the same multiresolution analysis whenever His
any measurable 27Z" periodic function which satisfies |H (&)] = 1 for almost
all £. The scaling equation satisfied by ¢; will, in general, be different from
the one satisfied by ¢.

2.5 Examples
2.5.1 Multiresolution analyses generated by self similar sets

Suppose K4 is a full collection of representatives of Z" [AZ". Consider the
compact set. @ defined by

(16) Q={zsecR :x=) A, ¢ € Ka}.
i=1

Note that Q depends both on A and the choice of ‘digits’, Ka. This set '
satisfies many intersting properties. For our purposes it suffices to note the
following:

e Q is self similar in the affine sense. That is,

(17) AQ= U (x+Q)

KEK 4

where the terms in the union are essentially mutually disjoint , that is
|(k1 + Q) N(x2 + Q)| = 0 whenever k1 # Ka.

e The characteristic function, xg, of this set satisfies

(18) Xe(z) = 2 Xq(Az —K).

KEK A
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This, of course, is equivalent to (17). Also note that the sequence
{sk}rezn defined by

0 otherwise

{1 ifk ey
8 =

satisfies properties (14) and (15).
¢ The measure of Q, |@/, is an integer > 1.

The characteristic function of @, xq, generates a multiresolution analysis
in the following sense: If V is the L2(JR"™) closure of the linear span of
{xq(z — k)}rez~ then the collection of spaces V = {V;}jcz defined by

V; = UiV
= {f(z) : f(A77z) € Vo}

is a multiresolution analysis associated to (Z", A). This is a consequence of
the fact that x¢ satisfies (18) and the fact that

3 ko€ —27K)>? >0  ae.
keZ™

See [30] for more details.

Furthermore, if |@| = 1 then xq is a scaling function for this multireso-
lution analysis. In other words, {xq(z — k)}rez~ is a complete orthonormal
system for Vj. For conditions which guarantee that |Q| =1 see [17, 30].

On the other hand if |Q| > 1 then {xq(z — k)}rez~ fails to be a Riesz
basis for V. Nevertheless it is not difficult to find a scaling function for V.
The function ¢ defined by the formula for its Fourier transform

Xe(§)
{Ekez IX@(€ - 27rk)|2}1/2

is one such example. In many cases it is possible, and often not difficult, to
find a scaling function which is the characteristic function of an appropriate
set with measure one; however, it is not clear whether this is always the case.

For more details concerning these multiresolution analyses see [17, 7, 30].
We conclude this subsection with several specific examples.

(&) =
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Univariate examples In the case n = 1 consider A = 2. If K4 = {0,1}
then Q is the interval [0,1] and xq is a scaling function for the multiresolution
analysis which it generates; note that

Vo = {f € L*(IR) : f is constant on the intervals (j,j + 1), j€Z}.

If K4 = {0,m} where m is an odd integer # 1 then Q is the interval [0, m]
and xq fails to be a scaling function for the multiresolution analysis which it
generates. However it is apparent that this multiresolution analysis, namely
the one generated by X[o,m], is the same as the one generated by x[o,1-

If A= —2and K4 = {0,1} then Q is the interval [-2/3,1/3]. The rest of
the remarks made in the case A = 2 are valid mutatis mutandis in this case.

The case A = 3 is more interesting. If K4 = {0,1,2} then Q is the interval
[0,1] and xgq is a scaling function for the multiresolution analysis which it
generates; here again Vj is the same as above. If K, is a multiple of {0,1,2}
then @ is the same multiple of the interval [0, 1] and xq generates the same
multiresolution analysis as xjo,1. However if, for instance, Ka = {0,1,5}
then Q is a disconnected set of measure one and the multiresolution analysis
generated by Q is very different from the one generated by [0,1]; indeed here

Vo = {f € L*(IR) : f is constant on the sets j +Q, j € Z} .

More generally one may consider the case A = N where N is an integer
such that |N| > 1. The cases N > 3 are not unlike the case N = 3.

Bivariate examples In higher dimensional spaces the sets Q can be quite
interesting. We will limit ourselves to several standard examples in IR?

First consider A = 2I where I is the 2 x 2 identity matrix. If the members
of K4 are described by the columns of

0101
0011

then Q is simply the unit square [0, 1]? and xq is the scaling function for the
multiresolution analysis which it generates. However if the members of K4
are described by the columns of

a9 (6o351)
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Figure 4: The set @ corresponding to- A = 2I and K4 described by the
columans of (19)

then Q is set described by the shaded area in Figure 4.
If
11
=(a1)
and the members of K4 are described by the columns of
01
00

then @ is the so-called twin dragon of appropriate size and position which is
described by the shaded area in Figure 5.
For more examples see [17, ?, 30].

2.5.2 Univariate piecewise polynomial splines

This example nicely illustrates the usefulness of condition A6;.

Piecewise linear splines First consider the sequence of closed subspaces
of L?>(IR) defined as follows: ‘

V; = {f € L*(IR) : f is continuous on IR
and linear on the intervals [k277,(k +1)277], ke Z} .
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Figure 5: The set @ corresponding to the “twin dragon”

The sequence V = {V;};ez is a family of closed subspaces of L*(IR) which
satisfies conditions Al through A5 of a dyadic multiresolution analysis. That
condition A6 is satisfied is not immediately clear. However it is fairly trans-
parent that condition A6; is satisfied. Namely, integer translates of the
function

(20) o0 ={ o Hh

otherwise.

constitute a Riesz basis for V5. Thus V is a dyadic multiresolution analysis.
The scaling function whose recipe was given in Subsection 2.3 is

6_2
\/EkeZ" |€ + 2mk|~*

and the scaling sequence is the sequence of coefficients {sk}rez of

4y 1/2
Yrez €+ 4mk|™* ' 1 —ik
S(¢) = == ke
© {zkez CramRt) T2

&0(5) =

~

Note that because of the analyticity of the above expressions for ¢y and
5(€) both ¢o(z) and {si}rez enjoy exponential decay as z and k go to Foo
respectively. See Figure 6.
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Figure 6: The piecewise linear pseudo-scaling function ¢ and the scaling
function ¢y '

The general case More generally we may consider the & fold convolution
of x, the characteristic function of the interval [0, 1], with itself

(z)=x*---*x(z).
k

This function may also be described via its Fourier transform as

io={"21

Note that ¢ is k — 2 times continuously differentiable and coincides with a
polynomial of degree < k—1 on every interval (k,k+1), k € Z. Also observe
that in the case k = 1 the function ¢ is simply x and in the case k = 2 the
function ¢ is same as the function described by (20) translated one unit to
the right.

If Vp is the L2(IR) closure of the linear span of {¢(z — m)}mez then the
collection of spaces V = {V;}jez defined by

Vi ={f(z) : f(27z) € Vo}

is a dyadic multiresolution analysis of L2(IR). As in the case of the mutires-
olution analyses generated by tiles, this is a consequence of the fact that ¢
satisfies

¢(z) =2—kl_—1§=:0( ,’,; )¢(2a:——m)
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and the fact that )
Z |p(€ — 27fl)|2 >0 a.e.

leZ

This multiresolution analysis consists of piecewise polynomial splines of order
k.

Tt should be mentioned that the term spline is used here for traditional
reasons. In the case that k is an even integer V is a multiresolution analysis
composed of splines in the sense of Meyer whereas in the case that k is an
odd integer V fails to be such a multiresolution analysis.

The subspace Vj is the intersection of L*(IR) with the class of those
tempered distributions s whose k-th order derivative is a distribution of order
zero supported on Z, in other words, s satisfies

dF
-Cms(a:) = Y cmb(zx —m)

meZ

where 6(z) is the unit Dirac measure at the origin. This description of Vj
can, of course, be used as its definition.
As in the piecewise linear case, when k > 2 the function ¢ fails to be
a scaling function. On the other hand the collection {¢(z — D}icz is a
Riesz basis for V,, and the function ¢y defined by the formula for its Fourier
transform
f_k

VZiez € + 2al| %

is a scaling function. More details concerning this multiresolution analysis
may be found in [5, 14, 33].

éo(f) =

2.5.3 Multivariate analogues of the univariate spline examples

There are many generalizations of the examples in the previous subsection.
Three classes of multivariate analogues which, in a certain sense, reduce to the
univariate splines considered above are the (i) box splines, see [22, 25, 34, 38],
the so-called (ii) polyharmonic splines, see [28], and (iii) the multiresolution
analyses generated by the k fold convolutional iterates of the characteristic
functions of the sets described in Subsection 2.5.1, see [39]. Here we indicate
a few details concerning the last two classes.
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Polyharmonic splines We begin with the basic setup.

Let SHy, k = 1,2,..., be the class of those tempered distributions s
whose k-th order Laplacian is a distribution of order zero supported on Z";
in other words, elements s in SH;, satisfy

Ars(z)= > c,,’,“(.S(a: —m)

mezZ"

where A is the Laplacian in IR™ and if k > 2 then A¥ = AAF-1L,

Next we recall that a matrix A on IR" is said to be a similarityif A = pAo
where Ag is an orthogonal matrix and p is a real number. If A is also an
acceptable dilation for Z" then, of course, | det A| = |p"| is an integer > 2.
In the case n = 2 these matrices are all of the form

(7)) = (3 )

where m and p are integers such that m? + p® > 2.
Finally let
Vo = SHy (| L(IR")

and note that V; is a closed subspace of L2(JR") which is not {0} only when
4k > n. Furthermore if 4k > n the collection {¢(z—m)}mez=, where function
¢ is defined by

o

W) = TS ez I — 2am[ #J7°
is an orthonormal basis for V;.
Now, if A is both a similarity and an acceptable dilation for Z" and
B = A* then
(21) oa)= Y snd(Az— k)

mezZ"

whose Fourier transform is

#(¢) = S(BTLE)$(B7'E)

where

Z Ske—i(m’ﬁ) .

mezZ®

Ymez |€ + 2nBm|~* 2 _
EmGZ" I& + 27rm|_4k

Q|

56 = {
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Note that because of the analyticity of the above expressions for (Z) and S(¢)
both ¢(z) and {Sm}mez~ enjoy exponential decay as |z| and |m| go to oo
respectively.

In view of (21) and the fact that {¢(z —m)}mez~ is an orthonormal basis
for Vp it follows that, if A is both a similarity and an acceptable dilation for
Z", then the collection of spaces V = {Vj};jez defined by

v, = UV
= {f(z) : f(A79z) € Vo}

is a multiresolution analysis associated to (Z",A). If 2k > n then this
multiresolution analysis is composed of splines in the sense of Meyer. For
more details see [28]. :

Note that in the case n = 1 these classes reduce to the classes of piecewise
polynomial splines considered in the previous subsection which are of even
order. '

Multiresolution analyses generated by the & fold convolutional it-
erates of certain characteristic functions The characteristic functions
are of sets which were considered in Subsection 2.5.1. The basic setup is the
following:

Suppose k is a positive integer, A is an acceptable dilation for Z", K4
is a full collection of representatives of Z"/AZ", and Q is the compact set
defined by (16). Let ¢ be the function defined by

P(z) = x * - * x(2)
k

where Y is the characteristic function of . This function may also be de-
scribed via its Fourier transform as

(&) = {X(©)}* .

Note that
(22) $(x)= Y smp(Az —k)

mezZ™
whose Fourier transform is

$(¢) = S(B71)$(B7¢)
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where B = A* and

k
1 —i(v, 1 —i(m
veEK 4 mez"

The function ¢(z) has compact support and the sequence {5, }mez» has only
a finite number of non-zero terms. ‘

As in Subsection 2.5.1 the function ¢ generates a multiresolution analysis
in the following sense: If Vj, is the L%(IR") closure of the linear span of
{¢(z — m)}mez~ then the collection of spaces V = {V;};ez defined by

V; = UV
= {f(z) : f(A7z) € Vo}

is a multiresolution analysis associated to (Z", A). Thisis a consequence of
the fact that ¢ satisfies (22) and the fact that

> |p(6 —2rm)? >0  ae.

mezZ"

Furthermore, if |Q| = 1 then {¢(z — m)}mez» is a Riesz basis for V5. On
the other hand if |Q| > 1 then {¢(z — m)}mez~ fails to be a Riesz basis for
Vp. Nevertheless in either case it is not difficult to find a scaling function for
V. The function ¢ defined by the formula for its Fourier transform

()
{Smezs 19(6 — 20m)2} "

does the job in both cases. Unfortunately ¢, does not in general enjoy
compact support. Other interesting facts concerning these multiresolution
analyses can be found in [39].

Note that in the case n = 1 and appropriate choice of K4 these classes
reduce to the classes of piecewise the polynomial splines considered in the
previous subsection.

¢A50(§) =

2.5.4 Compactly supported scaling functions

Examples of compactly supported scaling functions can be found in Subsec-
tion 2.5.1. The fact that the spline examples considered above do not give
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rise to compactly supported scaling functions suggests that examples which
are smoother than those considered in Subsection 2.5.1 may be more difficult
to construct. Indeed the construction of such examples in the univariate case
is the central topic of Daubechies work [12], see also [14].

The simplest example considered in [12] involves the function ¢ described
in Example 1.2.3 and Figure 2. This function generates a dyadic multiresolu-
tion analysis of L2(JR) and is also a scaling function for this multiresolution
analysis. In other words, if Vj is the L?(IR) closure of the linear span of
{#(z — k)}rez then the collection of spaces V = {V;};cz defined by

Vi ={f(z) : f(27z) e Vo}
is a dyadic multiresolution analysis and ¢ is a scaling function for this mul-
tiresolution analysis. '

Recipes for constructing dyadic multiresolution analyses of L*(IR) with
compactly supported scaling functions which enjoy any desired finite order
of smoothness can be found in [14] along with many specific examples. The
rough idea is to construct appropriate scaling sequences and define the cor-
responding scaling functions as the compactly supported solutions of the
corresponding two scale difference equations. The difficult part is guarantee-
ing that the resulting solutions are indeed scaling functions with the desired
properties.

Multivariate examples can be constructed by taking appropriate tensor
products of univariate examples. For example, if ¢; and ¢, are univariate
scaling functions for multiresolution analyses V; and V, which are associated
to the dilations x — Nz and z — N,z respectively, ¢; may or may not be
the same as ¢, then the bivariate function ¢ defined by

(z,y) = d1(z)d2(y)

is a scaling function for a multiresolution analysis of L?(IR?) associated to
(Z*, A) where
(N O
a=(B2).

On the other hand, in the case of a general acceptable dilation A in IR",
n > 2, I am not presently aware of any recipes for the construction of com-
pactly supported scaling functions for multiresolution analyses associated to
(Z™, A) which enjoy an arbitrarily high finite order of smoothness. Some
work in this direction may be found in [8].
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2.5.5 Band limited scaling functions

Suppose ( is a compact subset of IR" which enjoys the following properties:

e QO C BQ.
e |2N{Q +27k}| = 0 for any element k in Z"™ \ {0}.

U {@+ 27k} =~ R".
kezr

e For all cubes Q of finite diameter in JR"

xe(§)dé =1.

lim = :
j—oo |B-3Q)]| JB-iQ

Consider the collection of subspaces V = {V;};cz defined by
V; = {f € L*(R"): supp f C B'Q} .

The properties of {2 imply that V is a multiresolution analysis associated to
(Z", A). The function ¢ defined by

(23) #(€) = xa(§)

is a scaling function for this multiresolution analysis.
Note that ¢ is not only a scaling function but also a cardinal function for’
Vo. Namely,
¢(k) = bo,e

for all k in Z™ and every f in Vj enjoys the representation

f(z)y= Y, f(k)d(z — k).
keZ™

Since the last equation is also the expansion of f with respect to the orthog-
onal basis {¢(z — k)}rez» of Vo the multiresolution analysis V is composed
of splines in the sence of Meyer.

Unfortunately ¢(z) has poor decay properties as |z| goes to infinity. In
particular, |z|¢(z) fails to be in L>(IR").

The simplest example is the case where n = 1, ( is the interval [—m, 7],
and A = B = 2. Here ¢(z) = sincz and we refer to this case as the sinc
multiresolution analysis.
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Examples with better decay properties Suppose that in addition to
the above listed properties (1 satisfies the following:

e The interior of BS) contains (.

In this case there exit functions which are infinitely differentiable, are iden-
tically equal to 1 on (2, and have support in Bf). Choose one which is
non-negative, call it h, and define ¢, via

B(8) = h(e) -

Note that {@o(z — k)}rez» is a Riesz basis for the closure of its linear span
Vo. If o

V= () : F(A7z) € Vo)
then V = {V;}jez is a multiresolution anlysis associated to (Z", A) with a
scaling function ¢ defined by ’

h(€)
{Trezn |B(€ — 2R)2}/*
Unlike the earlier case, ¢ is not a cardinal function for V. Nevertheless V is

composed of spline functions in the sense of Meyer; the cardinal function A
in this case is given by

$(€) =

h(£)
Trezn M€ — 21k)

Furthermore both ¢(z) and A(z) decay faster than the reciprocal of any
polynomial as |z| goes to infinity; in other word, for any positive integer p
both

A& =

zIP¢(z)  and  |z]PA(2)

are bounded on IR".

Unfortunately, even in the simplest cases, an explicit formula for either ¢
or ) is not easily available. For this reason in certain applications one may
wish to sacrifice some of the decay properties by choosing less regular h.
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3 Wavelets

3.1 Introduction

In what follows A is an acceptable dilation for Z", V = {V;}jcz is mul-
tiresolution analysis of L2(IR") associated with (Z",A), and ¢ is a scaling
function for V = {V;}jcz with corresponding scaling sequence {s;}jez»- Let
b= a— 1 where a = |det A|. The objective of Subsections 3.1-3.5 is to
outline how this framework gives rise to a wavelet basis and, in the process,
to constructively prove the following: .

Theorem 1 There ezist b functions v1,...,¥, which enjoy the following
properties: :

e If iy = ¢ is a scaling function for V then the collection

{¢j(x - k)}je{o,l,...,b},kezn
is a complete orthonormal system for the subspace V.

o The collection

{a2p;(A'z — k) }jequ,...b) kezm, lcZ

is a complete orthonormal system for L*(IR™).

Remarks The functions ¥, ..., ¥ are a collection of fundamental wavelets
associated with the multiresolution analysis V. The development below will
show (i) that this collection is not unique in any sense, although in the case
a = 2 there is in some sense a canonical formula for obtaining 11 from the
scaling function 4, and (ii) that b is the minimal number in this collection.

An important objective is the construction of wavelets 1, ... , 1y which
have the same decay, for large |z|, that the “best” scaling function has. For
example if V has a compactly supported scaling function then one would
like the 9’s to have compact support. The construction outlined below does
not in general guarantee this. However, because of the importance of this
matter, we will make remarks concerning this issue at convenient places in
the development.
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3.2 The basic setup

Let W; be the orthogonal complement of V; in V4. In other words
(24) Vin=W;®V;

where @ denotes the orthogonal direct sum of linear subspaces. Iterating
(24) results in

Vin=W;0W;.1®-- Wt ® Vi

for any positive integer k£ The last identity together with properties A2 and
A3 imply that
(25) L(R") =) &W;
JEZ
Now, the fact that mapping U, defined by Uaf(z) = a7 /2f(A7'z) is a
unitary transformation together with property A5 imply that ’

(26) W; = Uz Wo

for all integers j. Thus knowledge of the structure of the subspace Wy gives

us analogous knowledge of W; for all j. In particular, if there are functions
P1,...,1 such that

(27) {¢i(z — k) }iequ,...b} kezm
is a complete orthonormal system for W, then
{a??i(Az — k) }icqu, . b} iz

is a complete orthonormal system for Wj.
In what follows we will constructively show that there are b = a — 1

functions 1, ...,1, whose Z" translates (27) are a complete orthonormal
system for Wy. In view of (25) and (26) we may conclude that
(28) {a??i( ATz — k)}iequ,.. b jez ke

is a wavelet basis for L2(IR").
Since Wy C W it follows that the fundamental wavelets 1, .. ., v satisfy

(29) Vi(z) = D sixp(Az — k)

keZ™
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fori € {1,...,b} where ¢ is a scaling function for the multiresolution analysis
V and {s;}rez~ are appropriate sequences in I(Z"). Now, if {sok}trezr =
{st}rez~ is the scaling sequence for ¢, namely

&(z) = E soxp(Az — k) ,

keZ™

then from the orthogonality relations
/R" ¢i1 (IIJ - k1)¢i2 ("E - k2)dx = 651,1'26101,’62

where ¥ = ¢, i, and iy are indicies taking values in {0,...,b}, and ki
and k, are elements in Z", we may conclude that the sequences {s;}rez",
i =0,1,...,m, must satisfy
(30) D Sisk—aiSik = 0biy i 00,5

keZ"
for j € Z™.

Conversely, if {six}rez", ¢ = 1,...,m, are sequences in 12(Z™) which
satisfy (30) where if {so 4 }xez~ is the scaling sequence for ¢ then the functions
W1, ..., P, defined via (29) are candidates for fundamental wavelets. Indeed
the constructive proof of the existence of a collection of fundamental wavelets
essentially relies on the construction of such sequences. The details however
are carried out in the Fourier transform or frequency domain.

3.3 A characterization of W)

Recall that ¢ is a scaling function for ¥V = {V;};ez with corresponding scaling
sequence {s;};jez~ and

$(6) = S(B1)H(BT'E)
where B = A* is the adjoint of A and S(§) is the 2rZ™ periodic function
1 : '
S@==> spe (B,
@ kezn

Also recall that K4 and Kp denote full collections of representatives of
Z"|AZ"™ and Z" | BZZ" respectively. See Subsection 2.4.

Note that every 2rBZ" periodic function is of the form F(B~'¢{) where
F(§) is 2n Z™ periodic.
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Proposition 1 The function f is in Wy if and only if f enjoys the repre-
sentation

(31) f(6) = F(B™'E(B)
where F(£) is in L>(IR"[2nZ") and satisfies
(32) > F(B(¢ ~2r)SEE-2)) =0

for almost all €.

Proof: Observe that every element g in V; enjoys the representation

(33) . (&) = G(&)$(&)

where G(¢) is in L2(IR"[2nZ™) and, conversely, every such G gives rise to
an element g in Vp via (33). Since §(§) is in V, if and only if §(B~1¢) is in
¥, and W, C Vi we may conclude that reprsentation (31) follows from (33).

Relation (32) is equivalent to fact that f is orthogonal to V. To see this
use the following:

¢ Plancherel’s formula,
e the Fourier transform of the scaling relation (11),
e the periodization trick (9), and

e the fact that if H(¢) is a 2nZ" periodic function then

> HB(E-2m))|¢(B7HE—2m)P = 3 H(B™'({~2m)).

jezZ» veKp

This last item follows from (5), the periodicity of H, and an application
of (4).

Explicitly, for every g in V; write
[ f@a@da = [ F(B OB OGOE)de
= [ F(BOSBTOCOINB el
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= /Q ] { 3 F(B7Y(¢ —2mv))S(B-1(€ - 27r1/))} G(B¢)d¢

veKp

or, more succinctly,

(39 [ f@)ds=

/Q, { Y F(B7Y(§ - 2mv))S(BH(¢ - 27r1/))} G(Bg)d¢ .

veKp

Thus, if (32) holds then (34) implies that f is orthogonal to all g in Vp.
Conversely, if f is orthogonal to all g in V4 the integral on the right hand
side of (34) must vanish for all G in L*(IR" /2w ZZ") which implies (32). W

3.3.1 An alternate expression for ¥ F(B~1(¢ — 27v))S(B-1(§ — 27v)
The 27 Z" periodization, or average over the group Z"/BZ", of

F(B™§)S(B7'¢)

on the left hand side of formula (32) suggests a kind of inner product which
maps pairs of 2rBZ" periodic functions into a 27ZZ" periodic function.
This “product” may be more conveniently expressed in terms of the 27Z"
periodic components of the respective 2rBZ" periodic functions. To wit:
Every 2nBZ™ periodic function F(B~¢) enjoys the representation

1 e
il Z Fn(g)e—zm r:€)
ﬁnE/C,;

where F,.(¢), k € K4, is a 2rZ" periodic function which can be derived from
F(B71¢) via the formula

(35) F(B7'¢) =

(36) F€) = 7= 3 F(BHE —2m)e )

veKp

If G(B™1¢) is another 2rBZ" periodic function then

37 Y F(BT(¢-2m))G(BE-2m)) = 3 Fu(6)GL(O)

veKp keK 4
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where, of course, G, is related to G in the same way that F, is related to F.
Note that (37) gives us an alternate expression for the inner product defined
by the right hand side of (32).

Formulas (32), (35), and (37) suggest that 2rBZ" periodic functions
F(B~1¢) be viewed as a tuples of 2rZ" periodic functions

F(&) = (Fiy(8), - Fu(€)

where (K1, .. . ,K,) is an ordering of K4 and Fi, . .., F,, arerelated to F(B71¢)
via (36). We do this in what follows.

3.3.2 Details

We begin by noting the following:

Lemma 1 Ifv € Kp then

(38) . Z ei27r(A—'ln,V) — a(SO,V .

KEK 4

This is nothing more than the observation that the mapping
k+AZ" — ei27r(A_1n,V)

is a character of the coset group Z"/AZ" and (38) is a well known relation
for such functions. For example see [36]. For the sake of completeness we
recall the argument.

Proof: If v = 0 then (38) is transparent. If v # 0 then there is a p in
K 4 such that e 27AT ) £ 1. Since K4 — p is also a full collection of coset
representatives so that

Z ei21r(A“1(n—y),u) — E ei21r(A"1;c,u) ,
KEK 4 k€K A

we may write

ZK.EICA ei27r(A"1n,u) — ei27r(A’1(/,t,u) ENEK:A ei21r(A_1(n—p),u)
_ i2n{A" _i2n(A1k,
= AT g AT

Since €247 #¥) £ 1 the last string of equalities implies (38). | |
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Formulas (35) and (37) are easy consequences of this lemma. To see (35)
use identity (36) for Fy, interchange order of summation, and apply formula

(38) to write

1 i(a-1
— F (&)e 4 K:€)
Vi, .

_ 1 1 g (a-tng—2m) | ~iA=1x8)
—\/EK;A{\/& > F(B7'(¢ —2mv))e e

veKp

— l Z F(B_l(f -—27”/?){ Z ei27r(A—1K,u)} = F(B_lf) .

a veKp KEK A

To see (37) use formula (36) for F) and G, interchange various orders of
summation appropriately, and use identity (38) to write

3" F(6)Ge()

k€K 4

KEK 4 \/?1,_ VGICB_

-1_ — _ (A=1K,E—2mp)
{ IR }

=Y ¥ F(B7'(-2m))G(BI(§ — 27p))

veKp peKs
1 2l A=L —
{_ Z e 2r{A" 1k, v—p)
anGK:A
= Y F(B(¢ - 2m))G(BTE — 279)
veKp

Remark We alert the reader familiar with the application of these formulas
in [25] that a slightly different normalization, which results in a factor of a
in the right hand side of formula (37), was used there.
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3.4 Consequences of the characterization of Wo
In what follows we use the following conventions:
e ag=|detAlandb=a—-1

o {Kg,...,kp} and {vo,..., v} are fixed orderings of K4 and Kp respec-
tively with ko = 19 = 0. '

o If F(B-1¢) is a 2r.2Z" periodic function then F(¢) = (Fo(€), - - -, Fy(£))
where

-Fl(g) = '% Z F(B—1(§ —_ 27ry))e(A_1'€1,f—27rv)

veKp

for I € {0,...,b}. We identify F({) with F(B~!£) as indicated in the
previous subsection, namely,

- — 1 d —i< —15116)
(39) F(B7¢) = WZ(:)FI(Q@ 4 :
o If F(B‘IS) and G(B~1¢) are 2rBZ" periodic functions then
(F(£),G(O)p =2 F(§G(E) -
1=0

e The class of all measurable 2rZ" periodic vector fields

F(&) = (Fo),- .., F(8)

with values in € is denoted by VF(R"/2xZ",C*). The subclass con-
sisting of those elements of V F(R" /2 Z",C*) which are locally square
integrable is denoted by L*(V F(R"/2rZ",C*)) and for such elements

(F,6) = [ (F(©),G(Omde .

In view of the observations made in Subsection 3.3.1 the conventions
allow us to express the identity (12) involving the scaling factor S(B~1¢)
and identity (32) characterizing the periodic factors in the Fourier transform
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of W, in a more convenient way. Namely, if S(B71€) is a scaling factor then
the corresponding element S(¢) in VF(R"/2xZ",C*) must satisfy

(40) (5(),5(€)s =1
and if F(B1€)¢(¢) is the Fourier transform of f in Wp then
(a1) | (F(6), 5(€) = 0

for almost all £. Note that identity (40) implies that S (&) is a 2 Z™ periodic
vector field with values on the unit sphere in €. Relation (41) means that

F(f) is a 27 Z™ periodic vector field which is orthogonal to S §(£).
Recall that the Fourier transform of every element in Vi may be expressed
as

f(&) = F(B'€)9(¢)

where F(¢) is in L2(IR"/2xZ"). In view of the identification of F(B 1¢)
with F(f) we see that every f in V; can be identified with a unique F(f) in
LX(VF(R"[2rZ",C*)) in a natural way.

Suppose Xo, ..., X, is a basis for VF(R"/2xZ",C*) in the sense that
the Gramm matnx

(42) Gr(Zo, ..., Xs) = (R, X)) B)tmmo,.i

is both uniformly bounded and uniformly strictly positive definite, that is,
there are positive constants ¢ and C such that

(43) ¢ Z |7l < Z Z(Xz(ﬁ) Xn(€)pTTm < C E |7on?

=0 m=0 m=0

for almost all £ and all complex a tuples (7,...,7). Then every F(f) in
LA(VF(R"[2nZ",L*)) can be expressed as

F¢) = gﬂz(f)fz(f)

for some uniquely determined element H(&) = (Ho(8),-- ., Hp(£)) in
LX(VF(R"[2xZ",C*)).
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Consider the functions %(z), ..., ¥s(z) defined by
(44) () = Xu(BTE)P(B™)

where Xo, e ,)—fb are a basis of the type discussed above. We remind the
reader that ¢ is the scaling function and

b .
Xi(B) = = - Xin(£)e™ U7
m=0

where Xi(€) = (Xio(€),---» Xu(€)), 1 € {0,...,b}. In view of the observa-
tions made in the previous paragraph the Z" translates of the ’s, namely

{i(z — 5) hiefo,..p}, jez >

constitute a Riesz basis for V;.
In paricular if

(%), 5(€)s =0 foralland le{l,...,b},

then
{(z — J)hieq, b}, ez
is a Riesz basis for Wy. In analogy with the notion of pseudo-scaling func-
tion, we refer to the members of such a basis as pseudo-wavelets and the set
Pi(z),...,¥s(z) as a full collection of fundamental pseudo-wavelets.
Furthermore if ffo = S and

(X&), Xe(€)p =6 forallfand Lke{0,...,b},

then
{i(z — j)}ieqr,.b3, ez

is an orthogonal basis for Wy. In other words, P1(z), ..., PYp(z) is a full
collection of fundamental wavelets.
We summarize some of these observations as follows:

Proposition 2 Suppose Xo, ..., Xy is a basis for VF(R"[2xZ",C°) in the

sense that the Gramm matriz (42) satisfies (43). Then the Z" translates of

the functions Po(x), . - -, ¥Ys(z) defined by (44), namely the functions of x
{t(z = 5)}icqo,..b}, ez
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are a Riesz basis for V1. In particular if X = S and
(Xi(8), X:(£))p = deltay,  for allé and Lk €{0,...,b},

then
{(z—3J )}le{l,..f,b}, jezn

is an orthogonal basis for Wy and thus 1/)1'(:1:), ..., p(z) is a full collection of
fundamental wavelets.

3.5 A recipe

It is now clear, in principle at least, how to obtain a full collection of fun-
damental wavelets in terms of a scaling function ¢(z) and the corresponding
scaling factor S(B~1¢) which are associated with the multiresolution analysis
V. The recipe goes as follows: :

o First, for notational convenience, set So(B~1€) = S(B~1£). Next, iden-
tify So(B~1¢) with the vector field

50(€) = (Soo(£); - - - » So(£))

in VF(R"/2xZ",C*). The components of So(€) can be evaluated in
terms of So(B~1¢) via formula (39)

o Select b elements
Sn(&) = (Smo(£),- -, Sms(€)),  me{L,...,0},
in VF(R"/2xZ",E*) such that

Soo(€) So(§) -+ Sos(€)
S10(€) Su(&) -+ Sw(f)

(45)

Swo(§) Se(§) -+ Swl(f)
is a unitary matrix for all £. In other words, S Tyeves S, should be chosen
so that

(Si(6), Sn(€))B = bim
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for all £ and for all [ and m in {0,...,b}. This should be possible, in
principle, since

(50(€), 50 (&))p =1

for all &.
e Define 9, I = 1,...,b, via the formula for its Fourier transform
(46) h(€) = SBIE)H(E)

where ¢ is the scaling function associated with the scaling factor So(B~1¢),

b
S (B7Y¢) = % 3 Sim(€)e™ AT RmA)
m=0

and {Ko, .. .,ks} is a full collectiion of representatives of the coset group
Z" [AZZ". Equivalently

wi(z) = Y si;¢(Az — )

jez»

where the sequence {s;j}jez» is the sequence of coefficients in the ex-
pansion

1 o
SI(&) — ; Z sl,je—i(]’f)

JEZ™

By virtue of Proposition 2 the collection ¥y,...,; defined by (46) is a
full collection of fundamental wavelets.

The only unclear instruction in this procedure involves the selection of
elements Si,...,S, in VF(R"/2nZ",C") so that (45) is a unitary matrix.
We clarify this by first considering specific cases.

3.5.1 The case a =2
In this case we don’t have much choice. The selection
51(8) = (S01(€), —S00(8))
does the job nicely. Indeed, every possible choice is of the form

51(&) = T(€)(Sor(€), —Soo(%))

where T(¢) is a measurable 2 Z" periodic function which satisfies {T'(£)| = 1
for all &.
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3.5.2 Thecasea=3 |

Once §1 is chosen then 52 must be of the form

$o(6) = T(€)(So(&) x Si(8))
= T(€)(So1S12 — S02511, S02510 — S00S12, So0S11 — S01510)

where T'(¢) is a measurable 27 22" periodic function which satisfies |T'(£)| = 1
for all £ and x denotes the cross product in €3 which is essentially defined
by the second equality.

This is an easy consequence of the fact that any three vectors i, U, and
@ in €2 satisfy the identities

STR-T )

(@, % x 7) = det ( ) and | x 9 = |[@?|7]® — |(@, D)[* .

The first implies that 52 is orthogonal to both 50 and §1 while the second
implies that (S5(€), $2(€))p = 1 for all £.

The choice of S;(£) is not so clear however. On the other hand if the first
component of 5y(€), namely the function Spo(§), enjoys the property that for
some. positive constant ¢

(47) |S00(&)] = ¢
for all £ then the choice

51‘ _ (_‘SE-a —%7 0) (—g()—27 Oa —%, )
1= or
y/1S00l? + | So1|? y/ 100/ + | So2|?

will do the job. Analogous choices should be clear if Sp;(€) or So2(€) satisfy
(47). If none of the components of So(£) is uniformly bounded away from 0
then an appropriate combination will to the job. For instance,

gl = Tl(é')(-S_Ola _g(_laa 0) + T2(£)(§0;, 07 _El—(;) .

Note that T1(¢) and T2(£) can be chosen so that S1(€) is orthogonal to §0(§),
satisfies the identity (5)(€), 51(€))p = 1 for all £, and is almost as smooth as

50(8)-
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3.5.3 The general case: part 1

For simplicity write .

and assume that one of its components, which without loss of generality we
take to be ug, satisfies
(49) luo(§)] > ¢ >0

for all £&. Define X1 = (Xi0,...5X1s), - - - , X = (Xe0, - -, Xo) by

X1 —4; @y O 0

X —iy 0 @ 0
(50) .2 _ : 2 0

X, -7 0 0 o

and observe that

(51) | (Xi(€), So(€)yp =0

for all £ and all I in {1,...,b}. For each ! in {1,...,b} the vector field
X, = (Xu,- - -, Xi») may also be described by

-y ifm=0
Xim = g m=1
0 otherwise.
Next note that the Gram matrix
Gr(Xla e ,Xb) = ((-X:I(f), Xm(f))B)l,m:l,...,b
can be expressed as

(52) Gr(Xla e 7Xb) = |U0|2Ib + |U’|2P

where I is the b X b identity matrix,

b
w=(up,...,u) and |u2=|ul?.
=1
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The matrix P is the orthogonal projection onto the one dimensional subspace
generated by

(451
u* =
up
so that in matrix notation =
|ul*P = v*u .

Relations (51) and (52) imply. that the Gram matrix
Gr(go’)zlv s 7Xb)

is uniformly strictly positive definite, in other words it satisfies (43), and
that the functions 1, ..., defined by (44) are a full collection of pseudo
wavelets.

Orthonormal vector fields 51, §b which are orthogonal to 50 can now
be obtamed by applylng some sort of orthonormahzatlon procedure to the col-
lection Xl, Xb For example one may : apply the class1ca1 Gram Schmidt
method to some permutation of Xl, Xb to obtam Sl, Sb

A more symmetric method of obtammg Sl, Sb goes as follows: First
write .

X3
X

G=Gr()21,...,)—(:b) and X=

Now recall that G = XX*. Since G is uniformly strictly positive definite we
may compute both G~! and its square root, G™/2. Let

(53) S =G
where .
S1
s=| >
5,
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Observe that
SS* = GT12XX*GV2 = GIPGGT 2 =1,

which implies that the rows of S are orthonormal.

The method for obtaining S, S, which is succinctly summarized by
(53) gives rise to explicit expressions for these vector fields because G can
be expressed as

(54) G = (luof* + [u*)P + |uo[*(T, — P) ,

which is simply a convenient way of writing equation (52). From (54) it
follows that : :

G2 = (luof? + [u*)/*P + |uol (T — P) ,
which may be re-written as
G2 = ((|uof? + uf*) ™ = fuo| ™) P + fuol 'Ly

or, which is even more convenient, as

(55) G112 = ( . ! ) L u u + —1-11, .

o2+ w2 uol ) luf? |wol

Formula (55), the expression for X in terms of u and I, and the fact that
luo|? + |ul? = 1 leads to

-0 Bl +a  Puuy o0 Pl
G112 — —ty  Plouy Pz ta - flouy
—Up Bipuy Biipus <o Plpup +
where _
0
a=—
luo
and
—a
ﬂ o 1 + |u0| )
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In other words, in this case for each [ in {1,...,b} the vector field S =
(S, - - -, Sip) may be described by

- ifm=0
(56) Sim =14 Py +a ifm=I1
Buu,, otherwise.

We summarize this discussion as follows:

Proposition 3 If one component of Sy is uniformly bounded away from 0
then the above procedures give rise to explicit formulas for mutually orthonor-
mal vector fields S, ..., S, in VF(R"[2x Z",€*) which are orthogonal to S,.
The corresponding functzons V1, ..., defined by (44) are a full collection
of orthonormal wavelets.

In particular, if So(f) (ug(€), .- -, up(§)) and |up(€)] > ¢ > 0 then
the vector fields Sl, Sb whose components are described by (56) are mu-
tually orthonormal and are orthogonal to Sy. The corresponding functions
W1, ..., defined by (44) are a full collection of orthonormal wavelets.

Remark There are many interesting cases where the hypothesis of the
above proposition is valid. For instance, suppose the scaling factor S(B~ 1£)
is real valued and non-negative; examples of this will be given in Subsection
3.7. The first component ug of So(€) is given by

=\/_V§BS(B (& —27v)) .

Since

1= Y|SB ¢-2m))P < S(B~Y(¢—-2mv))<a

veKp veKp

it follows that )

7a <y <Va.

a

Details Note that in matrix notation X can be expressed as
= [U*, ’L-L()Ib]
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and hence

G = XX* = [u*, Gl;] [ ;);‘b ]

=u*u+ |U0|215 .

. _ .
G_1/2=( 1 1 ) ! wu+ +—I,

Jwol2 + [ufp  lwol ) |uf? |wol

and, since |up]? + |u[2 = 1, we may write

Thus

i 1 1
G YZX = [(1 - —) —u*u+ —I ] —u*, Gol
ol ) TaE S Tagp | 1 %ol)

* ﬂO |U0| -1 * )]
= |-u", — wu+1 .
[ |wol ( |uf? '

Using the substitution |u[2 = 1 — |ug|? = (1 — |uo|)(1 + |uo|) in the last
expression results in (56).

3.5.4 The general case: part 2

Finally suppose no components of So(&) = (us(€), ..., us(€)) are uniformly
bounded away from zero. Since {So, So)p = 1 it follows that there are mea-
surable sets Qg, . .., Q% which enjoy the following properties

o Each set is 202" periodic. In other words, if £ is in Q, then & + 27k
is in Q,, for all k in Z"™ and this hold for all m in {0,...,b}.

e Whenever £ is in (), then
1
> —.

e They are mutually disjoint. That is, N Qm = 0.

e Their union covers IR". That is,

(58) U Qm=R".
me{0,...,b}
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Let xo(£), .- -, xs(£) be the characteristic functions of of €, ...,{% respec-
tively. The last two listed properties of the {¥’s imply that

b
E xm(§) =1

m=0

for all £. In view of the pfoperty described by equation (57) using the meth-
ods outlined above for each m in {0,...,b} we can construct vector fields
Sm,...,Smin VF(R"/2rnZ",C®) such that

(Sr,S)p=0  forallke {1,...,b}

and L.
(S,T,Slm)B = 6k,le(§) for all k,1 € {1, ces ,b} .

These properites imply that the vector fields §1, ceey S, defined by
(59) | Si= > &
me{0,...,b}

are mutually orthonormal vector fields in VF(R"/2rxZ",C*) which are or-
thogonal to So. We summarize this last discussion as follows:

Proposition 4 The procedure outlined above gives rise to mutually orthonor-
mal vector fields Sy, ..., S, in VF(R"|2xZ",C*) which are orthogonal to S,.
The corresponding functzons ¥1,..., ¥ defined by (44) are a full collection
of orthonormal wavelets.

3.6 Remarks

Note that in the case a = 2 there is in some sense a “canonical” method of
obtaining S; from Sp. This is essentially the formula given by in Subsection
3.5.1. Unfortunately, as is quite evident from the construction outlined above,
no such canonical method is available in the case a > 2.

3.6.1 Cases which simplify

In certain cases the general procedure outlined above is not only unneces-
sarily cumbersome but may not produce wavelets with desired properties.
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Sometimes specialized methods may be simpler and produce better results.
A good example of this is illustrated by the method of obtaining the wavelets
in Subsection 3.7.1.

Other examples arise if we recall that the second step of the recipe is
equivalent to finding functions S1(£),. .., Sy(€) which are 27Z" periodic and
such that '

So(f - 27('B—1V0) So(f - 27TB_11/1) oo So(f — 271'.B_11/b)

(60) Sl(f - 27TB—11/0) Sl(é - 27I'B_1V1) EE Sl(f - 27TB_1V(,)
So(€ — 270B71g)  Sp(€ — 2B twy) .- Sy(€ —27B7'wy)
is an orthogonal matrix for all ¢ where Kp = {1y, ..., 1} is a full collection of

representatives of Z"/BZ". In certain cases it is possible to do this directly.
For instance if @ = 2, or equivalently b = 1, then the choice

(61) 51(€) = So(§ — QWB—IVI)e—i(pl,g—-k)

does the job, where mu; is the non-zero element in K4 and k is any any
conveniently chosen element of ZZ". This is equivalent to the choice of Si
given in Subsection 3.5.1. Formula (61) is essentially the classical formula
used to construct univariate wavelets in the dyadic case, see [14, 31, 33].

Another such example arises in the case n = 2, A = B = 2I when So(¢)
is real valued. If '

a=(3). m=(2) w=(1)

then one can verify that
Sl(g) = S()({ - 7I'V1)€—i(y2’€) ,

Sa(&) = So(€ - Ty i) |
and |
53(6) = So(f —_ 71'1/3)6"’(”1,5)

do the the job, see [20, 33]. More generally, if a = 4 and Sp(§) is real
valued an analogous choice of Si, Sz, and S3 is possible whenever Z" /BZ™
is isomorphic to Z2%/2Z?*. We remind the reader that in the case a =4 the
group Z"/BZ"™ can be isomorphic to one of two abelian groups, Z* 27222
or Z[AZ.
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3.6.2 Decay properties

A desirable feature for the wavelets 1, ..., %, is that they enjoy the same
decay properties as the scaling function which they are associated with. For
example if the scaling function ¢ has compact support or exponential decay
then it would be nice if each of the v;’s enjoyed the same property. Un-
fortunately the general recipe outlined above does not necessarily give rise
to such wavelets. The reason for this is that, roughly speaking, if a > 2
the functions Si, ..., S, produced by this method do not in general have the
same smoothness properties as So.

There are many specific cases where one can directly construct wavelets
which enjoy this feature. For example, it is not difficult to find compactly
supported wavelets in that case where the scaling function is the character-
istic function of a compact set, see Subsection 3.7.1. On the other hand a
comprehensive treatment of this issue is beyond the scope of this presenta-
tion. Here we mention several fairly wide cases. ‘

The case a = 2 This case is well understood and presents no difficulties.
The choice for S; given by (61) gives rise to a wavelet ¥ = t; with es-
sentially the same decay properties as the corresponding scaling function ¢.
For example, if ¢ has compact support then the scaling factor Sp must be a
polynomial, in other words the scaling sequence must be finite. In this case
the function S; given by (61) is also a polynomial which implies that the
corresponding wavelet has compact support.

The case a =3 The general recipe outlined in Subsection 3.5.4 does not in
general give rise to S; and Sp which are as smooth as Sg. On the other hand
the procedure indicated in Subsection 3.5.2 gives rise to S; and So which
have the following properties:

e If S, is a polynomial or is analytic then S; and S; may fail to have this
property. However both S; and S, will be infinitely differentiable.

o If Sp is k times continously differentiable then both S; and Sy enjoy
this property.
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The case a >n The abstract method used by K. Grochenig [18], see also
[33], in the case A = 2I can be adapted in this case to prove the existence of
S1,...,S, which have the following properties:

e If Sy is a polynomial the functions Sj, . . . , S, may fail to be polynomials.
However, they will be analytic.

e If S, is analytic or k times continously differentiable then functions
S1,...,Sy enjoy the same property.

A constructive variant of this method has been derived by P. Vial.

Compact support The desirability of nice decay properties, particulary
compact support, has lead in the univariate dyadic case to the study of
“biorthogonal” scaling functions and wavelets, see 7, 42], and in the mutivari-
ate dyadic case to a detailed study of various pseudo or pre scaling furictions
and wavelets associated with box splines, see for example [22, 25, 35, 38].

3.7 Examples
3.7.1 Wavelets generated by self similar sets

Consider the multiresolution analyses discussed in Subsection 2.5.1. Namely,
suppose K4 = {Ko, ... ,#s} is a full collection of representatives of Z" [AZ"
and Q is the compact set defined by (16) which is

Q={zeR":5=) A€, ¢ € K4} .
=1

J=

Furthermore suppose |@| = 1. Then xq is a scaling function for the mul-
tiresolution analysis it generates. In this case a fundamental set of wavelets
can be constructed directly as follows:

Recall that |det A| = a and b= a— 1. Select an a X a orthogonal matrix
of the form

1 1 ... 1
1 Uio U1 o Uiy

Ja
Upo Up1 - Upp
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and for j =1,...,bset

b
(62) ¥i(2) = 3 ujmxQ(AT — Km) -
m=0
The functions 1, ..., are a full collection of fundamental wavelets. The

corresponding orthonormal wavelet basis for L*(IR")

{a™?;(A™z — k) }je(t,..b}, meZ, kez™

is a natural generalization of the classical Haar basis for L(IR).

Univariate examples If A = 2 and K4 = {0,1} then @ is the interval
[0,1] and 9 = ¢ is the function in Subsection 1.2.1. The collection

{2"29(2"5 — k)}kmez

is the classical Haar basis for L?(IR).

More generally if A = N, N > 2, and K4 = {0,...,N — 1} then Q is
the interval [0,1], b = N — 1 and the wavelets t,...,¥s are the functions
described in Subsection 1.4.1. All the cases when @ is an interval give rise to
similar fundamental wavelets which are step functions. On the other hand
if Q is not an interval then the corresponding wavelets are simple functions
which are somewhat cumbersome to portray, the bivariate analogues are
easier to describe via approprate plots.

Bivariate examples If A = 2I and the members of K4 = {ko, ..., K3} are
described by the columns of

0101

0011

then Q is the unit square [0,1]%. Of course there are many possible choices
for the coefficients in represntation (62). The popular choice

uio U1 U2 U3 1 1 -1 -1
usp Uy Upp w3 = |1 -1 1 -1
ugo U3l U32 U3 1 -1 -1 1
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Figure 7: The Haar like wavelets 91, 12 and 3.

Figure 8: A krepresentation of the wavelet 13 associated to the tile corre-
sponding to A = 2I and K4 described by the columns of 77

gives rise to a bivariate analogue of the Haar system with the fundamental
wavelets 1)1, 19, and 13 plotted in Figure 7.
On the other hand if the members of K4 are described by the columns of

0103
0011

then corresponding tile @ together with the coefficients u;; given above also
gives rise to three wavelets ¥y, 92, and 3. The gray level plot of 3 is
displayed in Figure 8.

If the matrix A and the set of digits K4 are the same as those which
give rise to the so-called twin dragon set @ then corresponding fundamental
wavelet has values 1 and -1. Its gray level plot is displayed in Figure 9.

We finish our discussion of this class of examples by considering the matrix

(1)
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Figure 10: A representation of the wavelets in the last tile example.

which has determinant 3. If the members of K4 are described by the columns

of
0 0 -1
01 1
then corresponding tile @ together with the coefficients u;; given by

-1

U0 U1 U2 __\/g
- 0

Uz U2,1 U2

él"_lwlr—l
[ | {
&L_w -

give rise to fundamental wavelets ¢, and 1, whose gray level plots are dis-
played in Figure 10.

o1




3.7.2 Wavelets generated by univariate polynomial splines

For any positive integer k consider the dyadic multiresolution analysis of
L?(IR) which has the function ¢ defined by

- §‘k
P(&) =
) V/Tiez € + 2|2

as a scaling function. See Subsection 2.5.2. The corresponding scaling factor
is given by

—2k ) 1/2
S(¢) = {Emez € + 4] } S1y e

Ymez |+ 2mm|~2 meZ

where the coefficients {s,,} are real because S is real and even. Hence the
wavelet ¢ = 9, resulting from the recipe, see (61), can be expressed as

(63) (&) = e 75((E/2) — Md(©)
or
Y(@) = 3 () "s1mtp(26 —m) .
mezZ
Note that for any positive integer k¥ the sum
3 1€+ 2am|™*
meZ '

can expressed in terms of elementary trigonometric functions. For k =1 this
is the well known identity

: 4
2mm| ™2 = ———
2 kel =
and thus for £k = 2,3,...,
> 1€+ 2mm|~%* = ! @ 4

T (2k — 1)1 de22sin? ¢ /2

Thus the Fourier transforms, (63), of these fundamental wavelets can be
expressed in terms of elementary functions. Other formulas related to this
example can be found in [5, 14, 33].

Before leaving this section we mention that, like the classical Haar system,
these wavelets were discovered without the framework provided by multires-
olution analysis. They were discovered by J. Stromberg [40} shortly before
this framework was introduced.

meZ
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3.7.3 Multivariate analogues of the univariate spline examples

Here we indicate some of the details only for the polyharmonic splines. Var-
ious details concerning wavelets arising from the multiresolution analyses
generated by convolutional iterates of characteristic functions can be found
in [39]. For detailed constructions of wavelets and psuedo or pre wavelets
generated by the box spline multiresolution analyses see [22, 25, 35, 38].

Polyharmonic splines For any integer k greater that n/4 consider the
multiresolution analysis of L2(IR") associated to (Z", A) which has the func-
tion ¢ defined by

€17

\/EIGZ" |€ + 27| 4

as a scaling function. Assume that A is a similarity and an acceptable dilation
for Z". See Subsection 2.5.3. The corresponding scaling factor is

¢(6) =

Somez |€ + 2mBm|~% }” 2

(61) st = { Szt 20

where B = A*.

In view of the remark recorded immediately after the statement of Propo-
sition 3 the fact that scaling factor (64) is real valued and non-negative im-
plies that the method outlined in Subsection 3.5.3 can be used to to obtain
explicit formulas for the Fourier transforms of a collection of fundamental
wavelets. Like the scaling function ¢ these wavelets enjoy exponential decay
as |z| goes to infinity.

Note that in the case a = 2 the formula for the wavelet ¥ = 1 is
analogous to formula given in the univariate case.

3.7.4 Compactly supported wavelets

To see compactly supported wavelets which are significantly smoother than
the examples found in Subsection 3.7.1 consider the univariate examples cor-
responding to the scaling functions mentioned in Subsection 2.5.4. The sim-
plest specific example are the functions ¢ and 3 described in Subsubsection
1.2.3 and plotted in Figure 2. Since a = 2 in these cases, an application of

33




(61) gives rise to a wavelet with the desired properties; that is, if

2m+1
d(z) = ) s;6(2x — 5)
3=0
then §
© 2m+1

TOEDY (=1 Sama1-59(22 — )

where the k in formula (61) is chosen so that 3 has support in the same
interval as ¢.

As mentioned in Subsection 2.5.4 multivariate examples can be con-
structed by taking tensor products of univariate examples. For instance, if
#; and 1; are scaling function and wavelet associated to a univariate dyadic
multiresolution anslysis V;, ¢ = 1,2, then

wo(z,y) = d1(z)d2(y)

is a scaling function for a bivariate dyadic multiresolution analysis V and
01(z,y) = ¢1(2)Pa(y)

pa(,y) = ¥1(z)B2(y)
e3(z,y) = Yi(x)a(y)

are a full collection of fundamental wavelets associated with V.

As indicated in Subsection 2.5.4 a theory of smooth compactly supported
wavelets associated with a general dilation matrix A has not yet been devel-
oped. We close this section with the following amusing example:

Consider the acceptable dilation of z?

-(22)

and the bivariate two scale difference equation

3
po(z) = D sjpo( Az — kj)

§=0
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where {s, 51, 2, 53} is the same as that listed in Subsection 1.2.3 and
{ko, k1, ks, ks} are the columns of

012 2
0000O0)/°

The compactly supported'solufion g of this difference equation is a scaling
function for a multiresolution analysis associated to (Z?, A). Both ¢, and
an associated fundamental wavelet

3
p1(z) = g(—l)j33¥j‘ﬁ1(A$ — k;)

can be expressed in terms of the univariate scaling function and WaVelet, ¢
and 1, decribed in Subsection 1.2.3, namely

vo(z) = ¢(x1)9(z2)

and
p1(z) = P(z1)P(x2)

where z; and z, are the first and second conponents of = respectively.

3.7.5 Band limited wavelets

Let Q be a compact subset of IR* which has the four properties listed in
the beginning of Subsection 2.5.5 and let V be the multiresolution analysis
associated to (Z", A) which has ¢, where H(€) = xa(£), as a scaling function.
Suppose €4, ..., are mutually essentially disjoint subsets of B} each of
which which are congruent to 2 mod 27 Z" and essentially disjoint from (2.
In other words, if Q¢ = 2 then

e O, C BQ for each i € {0,1,...,b}.

o |%N{% + 27k} = O for any element k in Z" \ {0} and each ¢ €
{0,1,...,b}.

e For each i € {0,1,...,b}

U {Q: + 27k} = R".
kezn

%)




Finally, for each i € {1,...,b} consider the function 9 defined by

$i(€) = xau(é) -

Then the functions #1, ..., %, are a collection of fundamental wavelets asso-
ciated with V.

Just as the scaling function ¢ these wavelets have poor decay properties
at infinity.

The univariate case where A = B = 2 and ¢(z) = sincz the correspond-
ing wavelet 1, is the sinc wavelet ¢ mentioned in Subsection 1.2.2 and plotted
in Figure 1.

In the bivariate case where

1 -1
4-(1 )
and ¢(z) = sincz then the corresponding wavelet 9, is the sinc wavelet ¢
mentioned in Subsection 1.4.2 and plotted in Figure 3.

Wavelets with better decay properties These, of course, are derived
from the scaling functions with better decay properties mentioned in Subsec-
tion 2.5.5. Unfortunately their construction is not as simple as that found
above. In the case a = b+1 = 2 we can apply the canonical procedure which
results from the use of formula (61). Fortunely, since the scaling factor is
non-negative, in the case a > 2 the procedure outlined in Subsection 3.5.3
can be applied to obtain the S;’s to get the corresponding #;’s. In either case
the wavelets will enjoy the same decay properties as the scaling function.
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Scaling Functions and Sequences Associated
with Orthonormal Wavelets

F. Dlin and W. R. Madych
Department of Mathematics, U-9

University of Connecticut
Storrs, CT 06269

Abstract

It is well known that the integer translates of the scaling func-
tion associated with a given scaling sequence may fail to be mutually
orthogonal. Here, we address several technical questions related to
this phenomenon. For instance, we show that the scaling function
naturally associated with a finite scaling sequence always generates a
multiresolution analysis and give elementary but non-trivial examples
of scaling sequences which give rise to pathological scaling functions.

1 Introduction

Suppose ¢ satisfies the two scale difference equation
1) o(e) = ¥ sup(22 — k),
k

where  is any real number and {s;} is a finite sequence of scalars. Then a
necessary condition that {¢(z — k)}rez be an orthonormal system of func-
tions, namely

@ [ otz —myp(z =)z = bmn

which generates a dyadic multiresolution analysis is that the sequence {sw}
satisfies the following constraints:

(3) Eskgk—Zn = 260,n
k
and
(4) Z S = 2,
k




where 8, 1, is the Kronecker delta. The sequence {s:} is often referred to as

~ a scaling sequence and, if both (1) and (2) hold, the function ¢ is called a

scaling function. Relation (3) is a consequence of (1) and (2) while relation
(4) follows from

/_ O:o p(z)dz =1,

a condition which is implied whenever the closed linear span of {¢p(z —k)}rez
generates a dyadic multiresolution analysis. See [4] for more details.

1.1

Recall that if {s;} is a finite scaling sequence which satisfies (3) and (4) the
canonical solution of (1) is given by the function ¢ which is well defined by
the formula for its Fourier transform

(5) o(6) = TL s(e/2)

where

©) 5(6) = 5 S one™
and : o .

(7 o6) = [ pla)e ™ da.

Unfortunately, examples show that ¢ need not satisfy (2). See Subsection
14.

On the other hand such a ¢ always generates a dyadic multiresolution
analysis. To be more precise let V(i) be the closed linear span of {¢(z —
k)}rez in L2(IR) . We say that ¢ generates a multiresolution analysis when-
ever there is a multiresolution analysis

V={.cVacWwcwhcVC..}
with Vo = V(p).

Theorem 1 Suppose {s;} is a finite scaling sequence which satisfies (3) and
(4) and @ is the function which is described by (5). Then ¢ generates a dyadic
multiresolution analysis.

If o fails to satisfy (2) then it is somewhat technical and awkward to
describe a scaling function and corresponding scaling coefficients for the mul-
tiresolution analysis which is generated by ¢. The Fourier transform of such
a scaling function ¢ is essentially given by

o 2(6) |
Pl = e el 2

2




If all the coefficients {s;} are real, this multiresolution analysis always has
a scaling function which is supported in the interval {0, 00) ; it also has one
supported in (—o0,0]. The proof of the Theorem and the details to these
remarks can be found in Subsection 2.1.

1.2

The conclusion of Theorem 1 may fail if {s;} is not assumed to be finite. For
example, there are sequences {s;} which satisfy both (3) and (4) and decay
faster than the reciprocal of any polynomial such that the corresponding
function ¢ given by (5) fails to generate a multiresolution analysis.
Nevertheless this theorem can be extended to sequences which are not
finite and/or do not necessarily satisfy (3). For example the arguments in
Subsection 2.1 show that the conclusion of Theorem 1 holds whenever the bi-
infinite sequence {s;} satisfies (4) and enjoys exponential decay as |k| — oo.

1.3

If {s} is a scaling sequence, consider the corresponding periodic function
S(€) defined by (6). Recall that the constraints (3) and (4) on {si} are
equivalent to the conditions

(8) IS +1S(¢+m) =1

and

(9) S(0)=1

on S(£). Furthermore, relation (1) becomes

(10) p(€) = 5(£/2)p(£/2),

and relation (2) is equivalent to

(11) Y (e +2mk)P = 1.
k=—o00

The interplay between {s;}, S(¢), and the scaling equation (1) may be made
more succinct if to {s;} one associates the train of Dirac delta distributions

(12) s(z) = zk:skS(:c — k).

Then

(13) s(e) = 28

2




and equations (1) and (10) become

- (19) p(z) = s % (22)
i s,
(15) ¢(€) = T¢(€/2)
respectively.

Given a scaling sequence {s;} which satisfies the constraints (3) and (4)
and the corresponding periodic function S(¢) defined by (6) consider the
function Sy(¢) defined by

(16) Sn(€) = S(N¢),

where N is a positive integer. Clearly, Sy is also a 27 periodic function and
if N is odd it also satisfies (8) and (9). In other words

(17) ISn(E)* + |Sn(€+ 7)) =1
and
(18) Sn(0) =1

whenever N is an odd integer.
If s(z) is the train of delta functions which corresponds to {sx} and S(¢)
then the train sy(z) corresponding to Sy(§) is given by

1
(19) n(®) = wea(z/N),
which, in view of the fact that §(= /N ) = Né(z), may be expressed as
(20) sn(z) =Y sib(z — NE).
k

The corresponding scaling sequence {syx}x may be somewhat awkwardly
described by

{ $m if k=mN,m=0,+1,42,...
SNk =

0 otherwise.

(21)

In other words

(22) sy(z) = Xk:sN,ké‘(z — k).

In view of the relationship (21) between {sz} and {snr}x , we say that
{snr}: is a dilate of {sx}. Similarly, we say that Sy is a dilate of S.

If (x) is the canonical scaling function given by (5) associated with {s.}
then the function ¢y defined by

(23) on(e) = 1o()

4




is the corresponding scaling function associated with the sequence {snx}

If N is an odd integer, in view of (17) and (18), the sequence {sn}x is
also a scaling sequence which satisfies (3) and (4). Unfortunately if N > 1,
the corresponding scaling function ¢x necessarily fails to satisfy (2), namely,
the collection {¢x(z —k)}rez fails to be orthogonal. See Section 2.3 for more
details.

The above observations give rise to an easy method for constructing scal-
ing sequences which satisfy (3) and (4) but whose corresponding scaling func-
tions given by (5) fail to satisfy (2).

1.4

In the previous section we described a method for constructing scaling se-
quences which

o satisfy (3) and (4)
o fail to give rise via (5) to scaling functions ¢ which satisfies (2).

Tt is not immediately clear whether there are scaling sequences which
enjoy these properties and which do not arise in this way. In view of this it
is natural to ask whether every sequence which enjoys the properties listed
above is an appropriate dilate {syx}, with N odd and > 1, of another scaling
sequence {sx}.

This question was answered in the negative by Cohen and Sun [3]. Be-
cause their construction also resolves a more delicate question, see Subsection
1.5, it is unnecessarily complicated. Here we present an alternate, more ele-
mentary solution.

Observe that the existence of a finite scaling sequence {s;} which has the
appropriate properties and is not a dilate of another scaling sequence follows
from the existence of a trigonometric polynomial '

(24) 5(0)= 3 v

which satisfies (8) and (9), gives rise via (5) to a scaling function ¢ which
fails to satisfy (2), and has the property that S({/N ) is not 2x periodic for
any integer N > 1.

Proposition 1 For every even integer n which is > 8 there are trigonomet-
ric polynomials S of the form (24) which enjoy the following properties:

(i) The coefficients {s} are real, so # 0, and sn_y # 0.
(43) S(&) satisfies (8) and (9).




(i11) The function ¢ defined via (5) fails to satisfy (2).
(v) S(¢/N ) is not 2 periodic for any integer N > 1.
Our construction of the polynomials S whose existence is guaranteed by
the above proposition is based on the following lemma
Lemma 1 If S is a 2r periodic trigonometric polynomial and has 1 + e N¢

as a factor, where N is an odd integer greater than 1, then the function ¢
defined by (5) fails to satisfy (2).

The idea is to construct a 27 periodic trigonometric polynomial S which
satisfies (8), (9), and the conditions of Lemma 1 but is not a dilate of another
27 periodic trigonometric polynomial. In the case N = 3, take

(25) s(6) = ),

where F(¢) is a trigonometric polynomial chosen so that 5 satisfies (8) and
(9). Of course the choice F(¢) = 1 does the job but the resulting S(¢) is a

dilate of 1+e ¥,

Lemma 2 For every even integer n which is > 4 there are trigoﬁometric
polynomials F(§) of the form

. 0= Fars

such that
e coF#£0andc, #0
e The polynomial S defined by (25) satisfies (8) and (9)
o This polynomial can be chosen so that ¢c; #0 .

The last item of the Lemma 2 guarantees that S({/N) is not 27 periodic
for any integer N > 1.

The coefficients {c } in (26) are solutions to a system of quadratic equa-
tions. A specific numerical solution to this system in the case n = 4 is given

by
{co, c1, 2, €3, ca} = {0.280046, —0.553373, 0.609149, 0.441001, 0.223178}.

This gives rise to a polynomial S(£) in the form (24) with n = 8 and which
satisfies the conclusion of Proposition 1. The coefficients {so, ..., s7} are

{0.140023, —0.276687,0.304574, 0.360523,
—0.165098, 0.304574, 0.220500, 0.111589}.

Details are in Section 2.4 .




1.5

In view of Lemma 1 one may ask whether the presence of the factor 1 +
e~*N¢ N odd and greater than 1, is necessary in the polynomials S(£) whose
existence is guaranteed by Proposition 1. The example constructed by Cohen
and Sun. [3] shows that the answer is no.

Here, by slightly modifying the example given in [3], we construct the
polynomial with real coefficients of minimal degree which does not have the
factor 1+ e~*¥¢, N odd and greater than 1, and enjoys properties (i)-(iv) of
Proposition 1.

Consider the 27 periodic trigonometric polynomial

195
6=

whose roots in (—=, 7] are

{—711‘ —5r —-3n —n 7™ 3w 5™ 77r
9’9’9 °'9'0°9°'9'9"

This polynomial has factors

(etf —i1r/3)(ei£ _ ei‘lr/3)
2

Gi(§) =

and

Observe that the set of roots of G(¢) in (—7r,1r] is the set

-t —bm —m m b7 T«

Define the polynomial H(§) via

(27) H(€) = G2(OP{IGLE)I" + clGa(€ + m)[* cos €}

where the real constant cis chosen so that the expression in braces is positive.
This polynomial enjoys the following properties:

e H(¢)is a non-negative 27 periodic trigonometric polynomial whose set
of roots in (—, 7] is the set Q.

o H(—¢)=H(¢).
o H(¢)+ H(E+m)=1.




The last two items are can be easily seen by first re-expressing H(§) as

H(£) = |G(E)I" + clGo(&)*|Ga(€ + 7)I* cos €

and observing the behavior of each of the two summands. These properties
imply that
15
H(¢) = apcoské
k=0
which, in view of the lemma of Riesz, can be factored as

(28) H(¢) = SO

where : s

(29) S(¢) = Z spe
k=0

with real coeflicients sj.

Proposition 2 The 2r periodic polynomial S(¢) defined by (28) and (29)
satisfies properties (i)-(iv) of Proposition 1 and does not have 1+ e~*N gs a
factor, for any integer N > 1. -

1.6

Up to this point we have been mainly concerned with the canonical solution
of (1), that is, the solution ¢ described by (5). Since there are other solutions
of (1), which are not constant multiples of the canonical solution, it is natural
to ask when such solutions satisfy (2). The following theorem should resolve
most of these questions. :

Theorem 2 Suppose {s;} is a finite scaling sequence which satisfies (8) and
(4) and ¢ is the function whose formula is given by (5).

e If ¢ fails to satisfy (2) then every solution of (1) also fails to satisfy
(2).
e If o satisfies (2) then X is another solution of (1) which satisfies (2) if
and only if X
A(€) = R(£)#(£)
where h(2¢) = h(€) and |h(€)| = 1 almost everywhere on IR.

This result may be roughly rephrased as follows: If A is a solution of (1)
which satisfies (2) then the canonical solution ¢ also satisfies (2) and

MO = 1p(¢)]

almost everywhere on IR.




1.7

Finally we mention that the examples in Subsections 1.4 and 1.5 have lowest
degree possible. More precisely,

Proposition 3 Every tﬁgonometric polynomial S of the form (24) which
satisfies the conditions of Proposition 1 has n > 8. If, in addition, S s
required to not have 1+ e=*N¢, N odd and greater than 1, as a factor then
n > 16.

2 Details

These sections contain details omitted in the previous sections. We use the
convention, employed in [1], that the details to Section 1.n are contained in
Section 2.n .

2.1

We begin by recalling the following facts from (7] :

Proposition 4 A function ¢ in L*(IR) generates a dyadic multiresolution
analysis if and only if ¢ enjoys the following properties :

o There is a 21 periodic measurable function S(§) such that

(30) B(€) = S(£/2)(£/2) .
o For almost all ¢ :
(31) X (e 2wkl >0,

o For every finite interval I

(32) tm =t [ LlpoF /3 Ipte - 2w e =1,

j=oo [279]| Ja-ir it

where 277 = {z.: 2z € I} .

Proposition 5 Suppose ¢ is a function in L*(IR) which enjoys the properties
listed in Proposition 4 and P(£) is a measurable 21 periodic function such
that

PP = 3 19(¢ - 2k

k=—o00

Then the function @o defined by

(3) )= —}f,—%

is a scaling function for the multiresolution analysis generated by ¢.
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Suppose {si} and ¢ are as in the hypothesis of Theorem 1. Then ¢ is in
L*(IR), has compact support and satisfies (30) with S given by (6); see [4].
Define the periodic function ® via

(34) He)= 3 Ip(E - 2nk)P.

k=~o0

By virtue of the Poisson summation formula, € is a trigonometric polynomial
and hence ®(¢) > 0 almost everywhere.

Since S satisfies (8) and (9), it follows that S(w) = 0 and hence, in view
of (5), p(2rk) = 0 for all k € Z\{0}. Thus |3(¢)|?/®(£) is continuous in a
neighborhood of zero and equals one for { = 0. This implies that (32) holds
and, together with the previous observations, allows us to conclude that all
the conditions in Proposition 4 are satisfied, so the proof of Theorem 1 is

complete.
Observe that

ey = P _ SE2IE/D) _ SEPE/Den(El)
I 0 P(¢) P(¢)

so that ¢ satisfies the scaling equation

(=) Bo(€) = 5o(€/2)00(E/2),

where

(36) ORI

Note that So(£) satisfies (8) and (9) as it should. Also note that if ¢ satisfies
(2) then ®(¢) = 1 so that P can also be taken to be =1 and, in this case,
o = -

For the function P in (33) one can simply take P(£) = 1/®(¢), the positive
square root of ®(¢). If ®(¢) = ®(—¢), for example this is the case when all
the coefficients {s;} are real, then by virtue of the Riesz lemma, see [4], P(§)
can be chosen to be a trigonometric polynomial; in this case o(e %) = So(¢€)
is a rational function of z = e™%.

Let P(¢) = p(e™) be a 2r periodic trigonometric polynomial satisfying

(37) |P(E)I* = &(¢)

and observe that the following are also 27 periodic trigonometric polynomials
satisfying (37).

o ™ P(¢) for any integer m and

o P(£)(1 — ae~%)/(e™ — a) where a is a root of p(2).
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The last item implies that P(£) = p(e™*) can be chosen so that all the roots
- a of p(z) satisfy either |a| <1 or |a| > 1.

If P is chosen so that all the roots of p(z) are > 1 then, in view of the fact
that |So(€)| < 1, all the poles b of the rational function o(z), if any, satisfy
6| > 1 and, by multiplying P() by additional factors of e~ % if necessary, we
see that So(€) can be expressed as

So(é) = i ree ke
k=0

where lim sup,_, . |r+|*/* < 1. In this case, since @o(z) is the solution of the
two scale difference equation

pol() = i rupo(22 — )

=0

via fixed-point iteration starting with the indicator function of the interval
[0,1], it follows that @o(z) has support in [0, o).
An analogous computation produces po(z) with support in (—o0,0] .

2.2

To see that the conclusion of Theorem 1 may fail if {sz} does not decay
sufficiently rapidly, consider the 27 periodic function S(§) which is defined as
follows: begin with any non-negative C* function, h(£), which is supported
in I, = {¢ : |¢] < 7+ €} and is positive on I/,; here € satisfies 0 < e < 7.
Define g(¢) by ‘

h(§)
f —_—
M) = e e+ 2
and note that
(38) S lg(€ + 20R)P = 1.
keZ

Let
T(€) = Y g(£ +4nk)

keZ
and finally define S(¢) via

5(¢) = T(2N¢)

where N is a positive odd integer. Since S(£) is an infinitely differentiable
27 periodic function, we may write

(39) S(€) = 5 3 e ™

keZ
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where the sequence {s1} decays faster than the reciprocal of any polynomial.
- In other words, {si} enjoys the estimates

skl < Cp(1+ |K[)77
for all positve p where the constant C), is independent of k. In view of (38)

and the fact that
IT(OF = Z lg(& + 4xk)?,
kEZ

the function S(§) sa.tlsﬁes (8) and (9) Whlch implies that {s;} satisfies (3)
and (4).

Now, if ¢ is the function defined in terms of S(¢) via (5) then ¢ vanishes
in a neighborhood of 2k /N, for all kin Z \ {0}. Thus if N is greater than
1 then, recalling that N is odd, it follows that

> 18 t 2k)|®

keZ

vanishes in a neighborhood of 2w /N. In view of the second item in Proposi-
tion 4, we may conclude that ¢ fails to generate a multiresolution analysis.

2.3

To see that py(z) defined by (23), with an odd integer N > 1, necessarily
fails to satisfy (2), assume that {si} is finite and observe that go(27rm) =0
for all m in Z \ {0}. Thus ¢x(£) = G(N¢) vanishes whenever { = 2mm/N
for all m in Z \ {0}. Hence

an(e)= 3 Igw(E— 20k

k=—oc0

is a continuous periodic function which vanishes when £ = (27/N) + 27m,
m € Z and the desired result follows since the orthogonality of the system
{on(z — k)}x is equivalent to @ () =constant.

The general case follows from a similar argument.

2.4
To see Lemma 1 write
w s = 2R
where F(0) = 1 and observe that
1 e il
(41) #(&) = —5ine —e T ()
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where

F(&) = kﬁ F(¢/2*)

is an analytic function. From (41) we may conclude that 3(¢) vanishes when-

ever ¢ = 2mw /N for all m in Z \ {0} and the desired result follows from the
fact that

3= Y [p(E -~ 20h)P

k=—o00

vanishes when { = (2x/N) + 27m, m € Z.

To find a suitable polynomial F' for Lemma 2 substitute (25) into (8) to
get .
(42) IGEOPIFE) + |G +m)P|IFE+m)* =1,

where |G(€)]? = (cos(%))? and, of course, |G(§ 4 7)[* = (sin(%))2. Recall
that
1G(E)” +1G(¢+ )P =1

and observe that this together with (42) implies
(43) IGE)P{IF(E)? — 1} +|G(E + =) P{|F (€ +m)P =1} =0.
Now (43) is not difficult to solve for |F(€)[? if we choose it to be of the form
(44) IF(OF =G +m)PQ¢+m)+1,

_where Q is a trigonometric polynomial. Thus

|F(¢ +m)I* = |GOIQ(¢) +1

‘and substituting the last two expressions in (43) results in

IGOPIG(E + m)P{Q(E +7) + QE)} = 0

or, more simply,
(45) Qe +7)+Q(e) = 0.

It is clear that any linear combination of cos((2k—1)¢), k =0,1,2,..., solves
(45). Namely every trigonometric polynomial @ of the form

1
(46) Q(€) = Y ar cos((2k — 1))
k=1

is a solution of (45). In particular choosing

(47) Q(¢) = 4acos(¢)
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results in

(48) [F(&)? = a(cos4€ + cos 2§ —2cos€) + 1.

Details of this calculation can be found at the end of this section.

In general it is clear that if the absolute values of the coefficients aj in
representation (46) are sufficiently small then the right hand side of (44) is
positive. In this case the Riesz lemma mentioned above implies the existence
of a trigonometric polynomial

2142

(49) F(&) =Y cre™
k=0 .

which satisfies (44). In particular almost all choices of sufficiently small ay
in representation (46) will reult in non-zero co, ¢1, and c42 in (49). In such
cases the polynomial S(¢) described by (25) satisfies both (3) and (4) and
S(¢/N) fails to be 2m periodic for every integer N # 1.

Returning to (48) note that the maximum of cos4£ 4 cos2f{ — 2cos¢
occurs at £ = 7 and is 4. Numerical methods show that the minimum occurs
at £ = 0.818919 and is -2.42404; these estimates are accurate to the listed
number of decimal places. Hence the right hand side of (48) is positive if

(50) ~0.25 < a < 0.412534.

For such a, the Riesz lemma [4, page 172] implies the existence of the desired
trigonometric polynomial

(51) F(O)= Y eve™
k=0

which satisfies (48). If a # 0, then it is clear that both coeficients ¢y and ¢,
in (51) are not equal to 0 and the polynomial 5(¢) described by (24) has the
property that S(¢/N) fails to be 2r periodic for every integer N # 1.

To get an explicit collection of the coefficients ¢, for the polynomial F(¢)
given by (51) observe that such coefficients must satisfy the system of equa-
tions

at+dtatcd+ca=1
coc1 + €162 + cac3 + c3¢4 = —a
cocz + 163 + c204 = a2
cocs + c1cq = 0
cocs = af2
where a # 0 and satisfies the constraints (50). This system of equations can

be easily solved by numerical method such as Newton’s method. In the case
a = 0.125 one such solution is

{co, 1, €2, ¢5, ca} = {0.280046, —0.553373,0.609149, 0.441001,0.223178}.
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To see (48) recall that

c@)F = (eos( By = L1

so that if Q is given by (47)

IG(€)PQ(¢€) = 2a(cos & + cos 3¢ cos £).

Now using
cos 3§ cos§ = %(cos 4¢ + cos 2€)
we get
|G(€)*Q(€) = a(cos 4€ + cos 2 + 2 cos €)
and

|G(€ + m)PQ(€ + m) = acos 4€ + cos 26 — 2cos §).
Substituting the last formula into (44) gives the desired result.

2.5

To see that the constant c can be chosen so that the expression in braces in
formula (27) is positive, note that |G(€)|? is positive on (—, 7] except at
¢ = /3 and at ¢ = —7/3. Since the set of roots of |Go(€ + )|* in (—m, 7] is

the set
—8r —4m 27 2w 4w 8w

Qtr={4- 5505 5 g}

there is a positive € such that |Ga(¢ + )|? is positive for { in J, = (7/3 —
e,n/3+€)U(5r/3 —¢,57/3 + ¢€). Now, if

m = 1G1(€)I*(€)

45 [0 2 ]\J

and
M= sup |Go(€+7).
gef0,2x)\J.
then any ¢ such that 0 < ¢ < m/M will do the job.

To see Proposition 2 note that it follows from the properties of H(¢)
that S(¢) satisfies the first, second and fourth conditions of Proposition 1 .
Furthermore, since § is the set of roots of S(¢) in (—, «], S(£) does not have
1+ e7*M¢ a5 a factor. However, the third condition of Proposition 1 needs
some explanation.

Observe that the set Q 4 7 listed above has the following properties:

e Q<+ is a non-trivial invariant cycle in (—, x| for the operation £ +— 2¢
mod 2.
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o |S(¢)|=1forall {in O+ .

In view of these properties Cohen’s result concerning such cycles implies that
S(¢) satisfies the third condition of Proposition 1. See [4, page 188] or [2, 3, 5]
for more details. ‘

Before closing this subsection we mention that the construction of S(¢)
here is really analogous to that in Subsection 2.4 with |G1(€)|* playing the
role here that 1 played there.

2.6

To see Theorem 2, suppose {s;} is a finite scaling sequence which satisfies
(3) and (4), ¢ is the function whose formula is given by (5), and A is another
solution to (1). Then

(52) A(€) = h(6)2(6)
where h is a function which satisfies
(53) h(2£) = h(£)

almost everywhere on IR. Observe, that if ) is essentially bounded ‘then so
is h, namely, )
(54) ess sup [h(E)] < ess sup|(6)]-

€ER ¢eR

Inequality (54) follows from

ess sup A(E)| > ess sup LI63] |i£1|1<f§|¢(£)l,

the fact that infi¢<s [$(£)| is arbitrarily close to 1 for sufficiently small §, and
because of (53), for any positive §

ess sup [h(£)| = ess sup |h(£)].
¢]<é éeR

Assume ¢ fails to satisfy (2). To see that this implies that A also fails to
satisfy (2) suppose, on the contrary, that it does satisfy (2). Then

(55) S 13 - 2nR)f = 1

k=~o00

and, by virtue of (54),

(56) ess sup |A({)] < 1.
¢eR
Thus, we may write
(57) > 1AE - 2k < B(¢)
k=—oc0 -
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where @ is the trigonometric polynomial

)= 3 16 - 20k

k=-00

Since ¢ fails to satisfy (2) the polynomial ®(¢) is arbitrarily small on a set
of positive measure which, in view of (57), contradicts (55).

To see the second assertion of the theorem assume that A satisfies (2).
Then by virtue of (55) and (56), we may write

(58) RSO + D 16(6 —2mk)* > 1.

keZ\{0}

Now, since $(¢) < 1 and $(0) = 1, we may conclude that for any € satisfying
0<e<1/2
(59) RO 21—

whenever ¢ is in a sufficiently small neighborhood of 0. Since
ess inf [A(¢)] = ess fnf |R()]-

for any positive 8, (59) allows us to conclude that

ess géllf{|h(§)| >1.

The last inequality together with (56) imply that

(60) Ih(€)] =1

almost everywhere. Conversely, if A satisfies (60) and ®(¢) = 1 then (55)
follows from (52).

2.7

Proposition 3 is an easy but tedious consequence of the characterization of
zero sets of those polynomials S(£) which fail to generate a ¢ which satisfies
(2). These sets are characterized in [3, 5]. The details will appear elsewhere.

3 Remarks and acknowledgements

Section 1.1 was motivated by Lawton’s result [6] which asserts that if {sz}
is a finite sequence satisfying (3) and (4) and if ¢ is the function defined by
(5) then the collection of functions {2*/24)(2¥z — j)}1 jcz , where

(61) $(z) = Y(~151up(20 — k)
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is always a tight frame. See also [4, page 178]. The material in Section 1.1
implies that there are also orthonormal wavelet bases associated with {sz}
which can be derived from the scaling function g in the usual way.

The questions addressed in this paper arose in lectures WRM presented
during the 1993 spring semester at the University of Connecticut. Apparently
the question raised in Subsection 1.4 was first publicly raised by D. Pollen,
see [3].

We wish to thank I. Daubechies, who kindly suggested that pathological
scaling sequences which are not dilates might exist, and K. Grochenig, who
brought 3] and [5] to our attention.

- Both authors were partially supported by DAPRA Grant AFOSR-90-
0311.
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